Build models, then do tbl_regression and examine results. Do quick visual check against broom::tidy().

Linear Model

# 
mod_lm <- lm(hp ~ am, data = mtcars)
tbl_regression(mod_lm)
Characteristic Beta 95% CI1 p-value
am -33 -83, 16 0.2

1 CI = Confidence Interval

broom::tidy(mod_lm, conf.int = TRUE)
## # A tibble: 2 x 7
##   term        estimate std.error statistic  p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
## 1 (Intercept)    160.       15.5     10.3  2.12e-11    129.      192. 
## 2 am             -33.4      24.3     -1.37 1.80e- 1    -83.1      16.3

Survival Model

mod_survreg <- survreg(Surv(time, status) ~ age + ph.ecog, data = lung)
tbl_regression(mod_survreg)
Characteristic Beta 95% CI1 p-value
age -0.01 -0.02, 0.01 0.3
ph.ecog -0.33 -0.49, -0.16 <0.001

1 CI = Confidence Interval

broom::tidy(mod_survreg, conf.int = TRUE)
## # A tibble: 4 x 7
##   term        estimate std.error statistic  p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
## 1 (Intercept)  6.83      0.429       15.9  3.74e-57   5.99     7.67   
## 2 age         -0.00772   0.00688     -1.12 2.62e- 1  -0.0212   0.00576
## 3 ph.ecog     -0.326     0.0858      -3.80 1.42e- 4  -0.495   -0.158  
## 4 Log(scale)  -0.304     0.0619      -4.90 9.48e- 7  NA       NA

Logistic Model

mod_logistic <- glm(response ~ age + stage, trial, family = binomial)
tbl_regression(mod_logistic, exponentiate = TRUE)
Characteristic OR1 95% CI1 p-value
Age, yrs 1.02 1.00, 1.04 0.091
T Stage
T1
T2 0.58 0.24, 1.37 0.2
T3 0.94 0.39, 2.28 0.9
T4 0.79 0.33, 1.90 0.6

1 OR = Odds Ratio, CI = Confidence Interval

broom::tidy(mod_logistic, exponentiate = TRUE, conf.int = TRUE)
## # A tibble: 5 x 7
##   term        estimate std.error statistic p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 (Intercept)    0.226    0.620     -2.40   0.0166   0.0645     0.742
## 2 age            1.02     0.0115     1.69   0.0909   0.997      1.04 
## 3 stageT2        0.582    0.440     -1.23   0.219    0.242      1.37 
## 4 stageT3        0.942    0.450     -0.132  0.895    0.386      2.28 
## 5 stageT4        0.794    0.448     -0.516  0.606    0.325      1.90

Poisson Model

mod_poisson <- glm(count ~ age + trt,
  trial %>% dplyr::mutate(count = sample.int(20, size = nrow(trial), replace = TRUE)),
  family = poisson
)
tbl_regression(mod_poisson, exponentiate = TRUE)
Characteristic IRR1 95% CI1 p-value
Age, yrs 1.00 1.00, 1.00 0.5
Chemotherapy Treatment
Drug A
Drug B 0.91 0.83, 0.99 0.025

1 IRR = Incidence Rate Ratio, CI = Confidence Interval

broom::tidy(mod_poisson, exponentiate = TRUE, conf.int = TRUE)
## # A tibble: 3 x 7
##   term        estimate std.error statistic   p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>     <dbl>    <dbl>     <dbl>
## 1 (Intercept)   12.1     0.0782     31.9   1.71e-223   10.4      14.1  
## 2 age            0.999   0.00154    -0.730 4.66e-  1    0.996     1.00 
## 3 trtDrug B      0.906   0.0440     -2.25  2.47e-  2    0.831     0.988

Linear Mixed Model

mod_lmer <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
tbl_regression(mod_lmer)
## Registered S3 methods overwritten by 'broom.mixed':
##   method         from 
##   augment.lme    broom
##   augment.merMod broom
##   glance.lme     broom
##   glance.merMod  broom
##   glance.stanreg broom
##   tidy.brmsfit   broom
##   tidy.gamlss    broom
##   tidy.lme       broom
##   tidy.merMod    broom
##   tidy.rjags     broom
##   tidy.stanfit   broom
##   tidy.stanreg   broom
Characteristic Beta 95% CI1 p-value
Days 10 7.4, 13

1 CI = Confidence Interval

broom.mixed::tidy(mod_lmer)
## # A tibble: 6 x 6
##   effect   group    term                  estimate std.error statistic
##   <chr>    <chr>    <chr>                    <dbl>     <dbl>     <dbl>
## 1 fixed    <NA>     (Intercept)           251.          6.82     36.8 
## 2 fixed    <NA>     Days                   10.5         1.55      6.77
## 3 ran_pars Subject  sd__(Intercept)        24.7        NA        NA   
## 4 ran_pars Subject  sd__Days                5.92       NA        NA   
## 5 ran_pars Subject  cor__(Intercept).Days   0.0656     NA        NA   
## 6 ran_pars Residual sd__Observation        25.6        NA        NA

Generalized Linear Mixed Model

mod_glmer <- glmer(am ~ hp + factor(cyl) + (1 | gear), mtcars, family = binomial)

tbl_regression(mod_glmer, exponentiate = TRUE)
Characteristic OR1 95% CI1 p-value
hp 1.00 0.94, 1.08 >0.9
factor(cyl)
4
6 0.27 0.01, 12.1 0.5
8 0.12 0.00, 15727 0.7

1 OR = Odds Ratio, CI = Confidence Interval

broom.mixed::tidy(mod_glmer, exponentiate = TRUE, conf.int = TRUE)
## # A tibble: 5 x 9
##   effect  group term    estimate std.error statistic p.value  conf.low conf.high
##   <chr>   <chr> <chr>      <dbl>     <dbl>     <dbl>   <dbl>     <dbl>     <dbl>
## 1 fixed   <NA>  (Inter~    1.85     8.27      0.138    0.890   2.93e-4  11704.  
## 2 fixed   <NA>  hp         1.00     0.0357    0.0855   0.932   9.36e-1      1.08
## 3 fixed   <NA>  factor~    0.273    0.528    -0.671    0.502   6.13e-3     12.1 
## 4 fixed   <NA>  factor~    0.119    0.714    -0.354    0.723   8.95e-7  15727.  
## 5 ran_pa~ gear  sd__(I~    4.32    NA        NA       NA      NA           NA
tbl_lme4 <- tbl_regression(mod_glmer, exponentiate = TRUE,
                               conf.level = 0.90)

a <- coef(mod_glmer)[[1]] %>% {.[1, 2:ncol(.)]} %>% purrr::map_dbl(exp) 

b <- tbl_lme4$table_body %>% 
  dplyr::pull(estimate) %>% 
  na.omit()

all.equal(unname(a), as.vector(b))
## [1] TRUE

Linear Model with Interaction

mod_lm_interaction <- lm(age ~ trt * grade * response, data = trial)
tbl_regression(mod_lm_interaction)
Characteristic Beta 95% CI1 p-value
Chemotherapy Treatment
Drug A
Drug B -0.61 -9.4, 8.2 0.9
Grade
I
II 0.14 -8.3, 8.6 >0.9
III 4.5 -4.9, 14 0.3
Tumor Response 4.8 -6.9, 16 0.4
Chemotherapy Treatment * Grade
Drug B * II 4.2 -8.4, 17 0.5
Drug B * III -2.9 -16, 9.9 0.7
Chemotherapy Treatment * Tumor Response
Drug B * Tumor Response 1.3 -14, 17 0.9
Grade * Tumor Response
II * Tumor Response -4.4 -21, 13 0.6
III * Tumor Response -0.56 -17, 16 >0.9
Chemotherapy Treatment * Grade * Tumor Response
Drug B * II * Tumor Response 1.3 -22, 24 >0.9
Drug B * III * Tumor Response -5.3 -28, 17 0.6

1 CI = Confidence Interval

broom::tidy(mod_lm_interaction, conf.int = TRUE)
## # A tibble: 12 x 7
##    term                 estimate std.error statistic  p.value conf.low conf.high
##    <chr>                   <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
##  1 (Intercept)            44.7        2.92   15.3    6.52e-34    39.0      50.5 
##  2 trtDrug B              -0.615      4.44   -0.138  8.90e- 1    -9.38      8.15
##  3 gradeII                 0.144      4.27    0.0337 9.73e- 1    -8.28      8.56
##  4 gradeIII                4.48       4.77    0.940  3.49e- 1    -4.93     13.9 
##  5 response                4.78       5.93    0.806  4.21e- 1    -6.92     16.5 
##  6 trtDrug B:gradeII       4.17       6.37    0.655  5.14e- 1    -8.41     16.8 
##  7 trtDrug B:gradeIII     -2.95       6.51   -0.452  6.52e- 1   -15.8       9.91
##  8 trtDrug B:response      1.27       7.92    0.160  8.73e- 1   -14.4      16.9 
##  9 gradeII:response       -4.36       8.67   -0.502  6.16e- 1   -21.5      12.8 
## 10 gradeIII:response      -0.563      8.19   -0.0688 9.45e- 1   -16.7      15.6 
## 11 trtDrug B:gradeII:r~    1.29      11.6     0.111  9.12e- 1   -21.7      24.3 
## 12 trtDrug B:gradeIII:~   -5.25      11.4    -0.461  6.46e- 1   -27.7      17.2

Cox PH with Hmisc Labels

lung2 <- lung
Hmisc::label(lung2$sex) <- "Gender"
Hmisc::label(lung2$age) <- "AGE"
cox_hmisclbl <- coxph(Surv(time, status) ~ age + sex, data = lung2)
tbl_regression(cox_hmisclbl, exponentiate = TRUE)
Characteristic HR1 95% CI1 p-value
AGE 1.02 1.00, 1.04 0.065
Gender 0.60 0.43, 0.83 0.002

1 HR = Hazard Ratio, CI = Confidence Interval

broom::tidy(cox_hmisclbl, exponentiate = TRUE, conf.int = TRUE)
## # A tibble: 2 x 7
##   term  estimate std.error statistic p.value conf.low conf.high
##   <chr>    <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 age      1.02    0.00922      1.85 0.0646     0.999     1.04 
## 2 sex      0.599   0.167       -3.06 0.00218    0.431     0.831