control 3.0.0

Computer-Aided Control System Design (CACSD) Tools for GNU Octave

Lukas F. Reichlin
Thomas Vasileiou

Copyright (©) 2009-2015, Lukas F. Reichlin lukas.reichlin@gmail.com

This manual is generated automatically from the texinfo help strings of the package’s functions.
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the same conditions as for modified versions.

mailto:lukas.reichlin@gmail.com

Preface

The GNU Octave control package from version 2 onwards was developed by Lukas F. Reichlin
with major contributions by Thomas Vasileiou and is based on the proven open-source library
SLICOT. This new package is intended as a replacement for control-1.0.11 by A. Scottedward
Hodel and his students. Its main features are:

e Reliable solvers for Lyapunov, Sylvester and algebraic Riccati equations.

e Pole placement techniques as well as Hy and H,, synthesis methods.

e Frequency-weighted model and controller reduction.

e System identification by subspace methods.

e Overloaded operators due to the use of classes introduced with Octave 3.2.

e Support for descriptor state-space models and non-proper transfer functions.
e Support for multiple systems in time- or frequency-domain plots.

o Improved MATLAB compatibility.

Acknowledgment

The author is indebted to several people and institutions who helped him to achieve his goals.
I am particularly grateful to Luca Favatella who introduced me to Octave development as well
as discussed and revised my early draft code with great patience. The continued support from
the FHNW University of Applied Sciences Northwestern Switzerland has also been important.
Namely, sincere thanks are given to my advisors, professors Hans Buchmann and Jiirg Peter
Keller. Furthermore, I thank the SLICOT authors Peter Benner, Vasile Sima and Andras Varga
for their advice. Finally, I appreciate the feedback, bug reports and patches I have received from
various people. The names of all contributors should be listed in the NEWS file.

Using the help function

Some functions of the control package are listed with the somewhat cryptic prefixes @1ti/ or
@iddata/. These prefixes are only needed to view the help text of the function, e.g. help norm
shows the built-in function while help @1ti/norm shows the overloaded function for LTT systems.
Note that there are LTI functions like pole that have no built-in equivalent. The same is true
for IDDATA functions like nkshift.

When just using the function, the leading @1ti/ must not be typed. Octave selects the right
function automatically. So one can type norm (sys, inf) and norm (matrix, inf) regardless
of the class of the argument.

Bugs!

To err is human, and software is written by humans. Therefore, any larger piece of software is
likely to contain bugs. If you find a bug in the control package, please take the time to report
your findings! Feedback of any kind is highly appreciated by the author and vital for further
enhancement of the software. Bug reports are to be sent to the Octave bug tracker, the mailing
lists or directly to the author’s e-mail: lukas.reichlin@gmail.com

mailto:lukas.reichlin@gmail.com

Distribution

The GNU Octave control package is free software. Free software is a matter of the users’ freedom
to run, copy, distribute, study, change and improve the software. This means that everyone
is free to use it and free to redistribute it on certain conditions. The GNU Octave control
package is not, however, in the public domain. It is copyrighted and there are restrictions on its
distribution, but the restrictions are designed to ensure that others will have the same freedom
to use and redistribute Octave that you have. The precise conditions can be found in the GNU
General Public License that comes with the GNU Octave control package and that also appears
in Appendix A [Copying], page 104.

To download a copy of control, please visit http://octave.sourceforge.net/control/.

http://octave.sourceforge.net/control/

Table of Contents

1 Examples....... ... 1
1.1 MDD SSYS M. et 1
1.2 ot P . 1
1.3 ANAeTSOm. ..ot 2
1.4 MadievsKi. ..ot 2
1.0 VL Famp oo 3

2 Linear Time Invariant Models................................ 4
2. L S e 4
2.2 Al 5
2.3 ATd .o e 6
2 B 7
72 S v A 9
28 ZPK e 11

3 Model Data Access........... ... i 12
3.1 @QIti/dssdatao 12
3.2 @QIEI/ALEAata. 12
3.3 @QItI/Mrdata. 13
34 QIE/ et . 13
3.5 QLI SOt . oo 13
3.6 @IEI/SSAALA . . v ettt 13
3.7 QI EEAatao 14
3.8 @It/ ZpRAata . ..o 14

4 Model Conversionsouiiiiiaii i, 15
A1 @I/ . oo 15
A2 QUE/AZC ..o 15
A3 QUE/A2A . oo 16
44 QIEI/Prescaleo 16
4.5 QIEI/XPEITIL. ..o 17

5 Model Interconnections...................................... 18
Dl APPEIA . oo 18
5.2 @ItE/DIKAIAZ. - oo 18
5.3 QIEI/CONIMECT . . oottt 18
5.4 Qlti/feedback 19
Bu5 QUEL/IEE. . oo 19
5.6 QIEI/MCONNECTt 20
5.7 Qlti/parallel. 21
5.8 QIEI/SEIIES. . .ottt 21

5.9 SUMbDIK . oo 22

ii

6 Model Characteristics...............coiiiiiiiiiiiiiii.. 24
0.1 D o 24
6.2 CUT D L o 24
6.3 QIE/ACaino 24
6.4 Gramml. ... 25
0.0 NSV .ot 25
6.6 QLEL/ISCE - v 25
TR 11 ' o P 25
6.8 dsdetectable 26
6.9 @IG/ISAL .. .o 27
6.10 @QIt1/isminimumphase 27
G700 1510 1= PP 28
6.12 @IET/ISSISO. o vttt e 28
6.13 isstabilizable 28
6.14 Qlti/isstable 29
6.15 @IEI/MOTIN. ..ottt 30
0. 10 ODSV et 30
6. 17 ODSVE. oo 30
6.18 QIEI/POLE. ..ottt 31
0.19 PZIMAD -« ettt e 31
6.20 Q@IEI/SIZE . o oottt 31
6.21 QIEI/ZETO. . .ottt 32

7 Model Simplification 34
7.1 Qlti/minreal 34
7.2 QItI/sminreal. 34

8 Time Domain Analysis..................iiiiiiiiiiiiii... 35
Bl COVAT . . ettt ettt 35
B 2 OIS g . oo 35
8.3 AMPUISE o o 36
B4 ANItIal . .o 36
B D ST o 37
BB AN . . ettt ettt 38
R A] o T PP 39

9 Frequency Domain Analysis................................. 40
9.1 DO . oot e 40
9.2 DOAEIMNAGottt 40
0.3 QIEI/ETOATESP « « e e ettt et et 41
9.4 MATGIN ... 41
9.5 MIChOLS . o oo 43
9.6 Iy QUIST . . oottt e 44
0.7 SEISIE VI Y - .. e 44
0.8 SIEINIA « ottt 45

10 Pole Placement.................... 46
101 PIlACE . e e 46

10.2

TlOCUS « o ot 47

11 Optimal Control 48
T1.1 aU@SEALE - oo 48
T12 dlQu vt e 48
1 T 1 49
R 100 P 50
11.5 Kalmam. e 50
0 U T 51
S U P 52

12 Robust Control........... 53
1 L AW . oot 53
12,2 Atfrd . . 54
123 N2SYI. ettt e e e 54
12,4 MInfSym. ..o 55
D T 441 4 PP Y4
12,6 MKEIEO ..o et 60
12,7 MCESYI oo 60

13 Matrix Equation Solvers 63
S T S) 63
13,2 dATe ..t 64
13,3 AlyaD « e 65
13.4 dlyapchol ... 66
5 785 T 7 o PP 66
13.6 lyapchol. ..o 66

14 Model Reduction........... 67
14.1 bstmodred e 67
14.2 btamodredo 69
14.3 hnamodred. e 71
14.4 spamodredt 73

15 Controller Reduction 77
15,1 btaconTed 77
15.2 cfconred. e 79
15.3 fwcfeonred . ..o 80
15.4 SPACONTEA . . .ttt ettt 81

16 Experimental Data Handling............................... 84
16.1 3ddatan . .. ve et e e 84
16.2 @iddata/cat. 85
16.3 @iddata/detrend 85
164 @iddata/diff ... 85
16.5 @iddata/fit 85
16.6 @Qiddata/filter. 86
16.7 @Iddata/get. 86
16.8 @iddata/ifft. 86
16.9 @QIddata/mMerge. vttt ettt e e 87
16.10 @iddata/nkshift. 87
16.11 @iddata/plot. 87

16.12 @iddata/resample. e 87

iv

16.13 @Iddata/Set.ou 87
16.14 @Iddata/SizZeo..iui 88
17 System Identification.............l 89
0 - o PP 89
17.2 10EDd . . 89
S T 04T 1<) o PP 92
17.4 nASId. ..o e 94
18 Overloaded LTI Operators 96
18.1 Q@ItI/CEIanSPOSE .« ... e vttt et e e e 96
18.2 @IE/ONA . ..o e 96
18.3 QIEI/ROTZCAL . .o e ettt 96
184 QIEI/INV ...t 96
185 Q@IEI/MUENUS . . oottt e 96
18.6 QIti/MIdIVIAE . .o vttt 96
18.7 QIEI/IIPOWET . .ot e ettt e ettt 96
18.8 QIti/mrdivideoue 96
18.9 @IE/IIEINES .+ v ee e 96
1810 Q@ItEE/PIUS. . oottt 97
1811 QIEI/TEPINAL . « . v ettt ettt e e 97
18.12 Q@IEI/SUDSASEIL . . v vttt et e e 97
18.13 @ItI/subsref. 97
18.14 QUEL/EINES « oo e 97
18.15 Q@IEI/ErAnSPOSE . . .o\ttt et 97
18.16 QIET/UIMINIUS. « .« e ettt et e e e et 97
1817 QIEI/UPIUS « v e ettt 97
18.18 Q@IEI/VETTCAb . .« vttt ettt e et 97
19 Overloaded IDDATA Operators 98
19.1 @iddata/end 98
19.2 @iddata/horzcat 98
19.3 @iddata/Subsasgii.iuiu i 98
19.4 @iddata/subsref. 98
19.5 @Iddata/VertCat.ttt e 98
20 Miscellaneous.o i i 99
20,1 dbB2Iag . . et e 99
20.2 maAag2db .. 99
20,3 OB OIS . oo ettt e 99
204 DI+ v et 100
20.5 PIAStA « oot e 100
2006 T PSS « ettt ettt e e e 100
20, T B SO « v v vt e e 100
20.8 test_comtrol 100
20.9 thiran. 101
20.10 BMWENGINE . ..o oottt e 102
20.11 Boeing 07 ... o 102
20.12 WestlandLynx oooi i 103

Appendix A GNU General Public License 104

Function Index

Chapter 1: Examples 1

1 Examples

1.1 MDSSystem

Robust control of a mass-damper-spring system. Type which MDSSystem to locate, edit

MDSSystem to open and simply MDSSystem to run the example file.

1.2 optiPID

Numerical optimization of a PID controller using an objective function. The objective function
is located in the file optiPIDfun. Type which optiPID to locate, edit optiPID to open and
simply optiPID to run the example file. In this example called optiPID, loosely based on [1], it

is assumed that the plant
1

(s2+s+1) (s+1)*

is controlled by a PID controller with second-order roll-off

P(s) =

Os)=ky 1+ —— + Ty s)

T; s (1 s+1)2

in the usual negative feedback structure

L(s) P(s) C(s)

T(s) = 1+ L(s) 1 + P(s) C(s)

The plant P(s) is of higher order but benign. The initial values for the controller parameters
k,, T; and T, are obtained by applying the Astroem and Haegglund rules [2]. These values are
to be improved using a numerical optimization as shown below. As with all numerical methods,
this approach can never guarantee that a proposed solution is a global minimum. Therefore,
good initial guesses for the parameters to be optimized are very important. The Octave function
fminsearch minimizes the objective function J, which is chosen to be

Ty 7T =g [1Ol dt + g (ylloe = 1) + s [1SG0) o
This particular objective function penalizes the integral of time-weighted absolute error
ITAE — / ¢ le(t)] dt
0

and the maximum overshoot

to a unity reference step r(t) = €(¢) in the time domain. In the frequency domain, the sensitivity
M = |S(jw)]|o
is minimized for good robustness, where S(jw) denotes the sensitivity transfer function

1 1

S(s) = 1+ L(s) - 1+ P(s) C(s)

The constants 1, e and us are relative weighting factors or «tuning knobs» which reflect the
importance of the different design goals. Varying these factors corresponds to changing the
emphasis from, say, high performance to good robustness. The main advantage of this approach

2 Chapter 1: Examples

is the possibility to explore the tradeoffs of the design problem in a systematic way. In a
first approach, all three design objectives are weigthed equally. In subsequent iterations, the
parameters u; = 1, s = 10 and pz = 20 are found to yield satisfactory closed-loop performance.
This controller results in a system with virtually no overshoot and a phase margin of 64 degrees.

References

[1] Guzzella, L. Analysis and Design of SISO Control Systems, VDF Hochschulverlag, ETH
Zurich, 2007

[2] Astroem, K. and Haegglund, T. PID Controllers: Theory, Design and Tuning, Second Edition,

Instrument Society of America, 1995

1.3 Anderson

Frequency-weighted coprime factorization controller reduction.

1.4 Madievski

Demonstration of frequency-weighted controller reduction. The system considered in this ex-
ample has been studied by Madievski and Anderson [1] and comprises four spinning disks. The
disks are connected by a flexible rod, a motor applies torque to the third disk, and the angu-
lar displacement of the first disk is the variable of interest. The state-space model of eighth
order is non-minimumphase and unstable. The continuous-time LQG controller used in [1] is
open-loop stable and of eighth order like the plant. This eighth-order controller shall be reduced
by frequency-weighted singular perturbation approximation (SPA). The major aim of this re-
duction is the preservation of the closed-loop transfer function. This means that the error in
approximation of the controller K by the reduced-order controller Kr is minimized by

K,min |[|IW (K — K,.) V||

where weights W and V are dictated by the requirement to preserve (as far as possible) the
closed-loop transfer function. In minimizing the error, they cause the approximation process
for K to be more accurate at certain frequencies. Suggested by [1] is the use of the following
stability and performance enforcing weights:

W= (I-GK)'G, V=(I-GK)!

This example script reduces the eighth-order controller to orders four and two by the function call
Kr = spaconred (G, K, nr, ’feedback’, ’-’) where argument nr denotes the desired order (4
or 2). The key-value pair >feedback’, ’~’ allows the reduction of negative feedback controllers
while the default setting expects positive feedback controllers. The frequency responses of the
original and reduced-order controllers are depicted in figure 1, the step responses of the closed
loop in figure 2. There is no visible difference between the step responses of the closed-loop
systems with original (blue) and fourth order (green) controllers. The second order controller
(red) causes ripples in the step response, but otherwise the behavior of the system is unaltered.
This leads to the conclusion that function spaconred is well suited to reduce the order of
controllers considerably, while stability and performance are retained.

Reference

[1] Madievski, A.G. and Anderson, B.D.O. Sampled-Data Controller Reduction Procedure, IEEE
Transactions of Automatic Control, Vol. 40, No. 11, November 1995

Chapter 1: Examples 3

1.5 VLFamp
VLFamp [Function File]
result = VLFamp (verbose) [Function File]

Calculations on a two stage preamp for a multi-turn, air-core solenoid loop antenna for the
reception of signals below 30kHz.

The Octave Control Package functions are used extensively to approximate the behavior of
operational amplifiers and passive electrical circuit elements.

This example presents several 'screen’ pages of documentation of the calculations and some
reasoning about why. Plots of the results are presented in most cases.

The process is to display a ’screen’ page of text followed by the calculation and a ’Press
return to continue’ message. To proceed in the example, press return. ~C to exit.

At one point in the calculations, the process may seem to hang, but, this is because of
extensive calculations.

The returned transfer function is more than 100 characters long so will wrap in screens that
are narrow and appear jumbled.

Chapter 2: Linear Time Invariant Models

2 Linear Time Invariant Models

2.1 dss
sys = dss (sys) [Function File]
sys = dss (d, ...) [Function File]
sys = dss (a, b, c,d, e, ...) [Function File]
sys = dss (a, b, ¢, d, e, tsam, ...) [Function File]
Create or convert to descriptor state-space model.
Inputs
Sys LTI model to be converted to state-space.
a State matrix (n-by-n).
b Input matrix (n-by-m).
c Output matrix (p-by-n).
d Feedthrough matrix (p-by-m).
e Descriptor matrix (n-by-n).
tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is
assumed.
Optional pairs of properties and values. Type set (dss) for more information.
Outputs
Sys Descriptor state-space model.

Option Keys and Values

’a? YK L0
a} b7C7

'stname’

'scaled’

‘tsam’

’inname’

‘outname’

‘ingroup’

‘outgroup’

‘name’
‘notes’
‘userdata’

Equations

7d7’ 767
State-space matrices. See 'Inputs’ for details.

The name of the states in sys. Cell vector containing strings for each state.
Default names are {°x1°’, ’x2’, ...}

Logical. If set to true, no automatic scaling is used, e.g. for frequency response
plots.

Sampling time. See ’Inputs’ for details.

The name of the input channels in sys. Cell vector of length m containing strings.
Default names are {’u1’, ’u2’, ...}

The name of the output channels in sys. Cell vector of length p containing strings.
Default names are {’y1’, ’y2’, ...}

Struct with input group names as field names and vectors of input indices as field
values. Default is an empty struct.

Struct with output group names as field names and vectors of output indices as
field values. Default is an empty struct.

String containing the name of the model.
String or cell of string containing comments.

Any data type.

Chapter 2: Linear Time Invariant Models 5
Ex=Ax+Bu
y=Cx+Du
See also: ss, tf.
2.2 filt
sys = filt (num, den, ...) [Function File]
sys = filt (num, den, tsam, ...) [Function File]
Create discrete-time transfer function model from data in DSP format.
Inputs
num Numerator or cell of numerators. Each numerator must be a row vector con-
taining the coefficients of the polynomial in ascending powers of z~-1. num{i,j}
contains the numerator polynomial from input j to output i. In the SISO case, a
single vector is accepted as well.
den Denominator or cell of denominators. Each denominator must be a row vector
containing the coefficients of the polynomial in ascending powers of z”-1. den{i,j}
contains the denominator polynomial from input j to output i. In the SISO case,
a single vector is accepted as well.
tsam Sampling time in seconds. If tsam is not specified, default value -1 (unspecified)
is taken.
Optional pairs of properties and values. Type set (£filt) for more information.
Outputs
Sys Discrete-time transfer function model.

Option Keys and Values

‘num’

"den’
‘tfvar’
inv’

‘tsam’

’iInname’

‘outname’

‘ingroup’

‘outgroup’

‘name’
‘notes’

‘userdata’

Numerator. See ’Inputs’ for details.

Denominator. See 'Inputs’ for details.

String containing the transfer function variable.

Logical. True for negative powers of the transfer function variable.
Sampling time. See 'Inputs’ for details.

The name of the input channels in sys. Cell vector of length m containing strings.
Default names are {’ul’, ’u2’, ...}

The name of the output channels in sys. Cell vector of length p containing strings.
Default names are {’y1’, ’y2’, ...}

Struct with input group names as field names and vectors of input indices as field
values. Default is an empty struct.

Struct with output group names as field names and vectors of output indices as
field values. Default is an empty struct.

String containing the name of the model.
String or cell of string containing comments.

Any data type.

6 Chapter 2: Linear Time Invariant Models

Example

1+4z"-1+ 2 z"-2
octave:1> H = filt ([0, 3], [1, 4, 2])

Transfer function ’H’ from input ’ul’ to output ...

1+4z"-1+ 2 z"-2

Sampling time: unspecified
Discrete-time model.

See also: tf.

2.3 frd
sys = frd (sys) [Function File]
sys = frd (sys, w) [Function File]
sys = frd (H w, ...) [Function File]
sys = frd (H, w, tsam, ...) [Function File]
Create or convert to frequency response data.
Inputs
Sys LTT model to be converted to frequency response data. If second argument w is
omitted, the interesting frequency range is calculated by the zeros and poles of
Sys.
H Frequency response array (p-by-m-by-lw). H(i,j,k) contains the response from
input j to output i at frequency k. In the SISO case, a vector (lw-by-1) or
(1-by-lw) is accepted as well.
w Frequency vector (lw-by-1) in radian per second [rad/s]. Frequencies must be in
ascending order.
tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is
assumed.
Optional pairs of properties and values. Type set (frd) for more information.
Outputs
Sys Frequency response data object.

Option Keys and Values

'H’ Frequency response array. See 'Inputs’ for details.
'w’ Frequency vector. See ‘Inputs’ for details.
‘tsam’ Sampling time. See ’Inputs’ for details.

‘inname’ The name of the input channels in sys. Cell vector of length m containing strings.
Default names are {’ul1’, ’u2’, ...}

Chapter 2: Linear Time Invariant Models 7

‘outname’

‘ingroup’

‘outgroup’

‘name’

‘notes’

‘userdata’

The name of the output channels in sys. Cell vector of length p containing strings.
Default names are {’y1’, ’y2°, ...}

Struct with input group names as field names and vectors of input indices as field
values. Default is an empty struct.

Struct with output group names as field names and vectors of output indices as
field values. Default is an empty struct.

String containing the name of the model.
String or cell of string containing comments.

Any data type.

See also: dss, ss, tf.

(sys) [Function File]
(d, ...) [Function File]
(a, b, ...) [Function File]
(a, b, c, ...) [Function File]
(a, b, c,d, ...) [Function File]

[]

(a'7

b, c, d, tsam, ...) Function File

Create or convert to state-space model.

2.4 ss
sys = ss
sys = ss
sys = ss
sys = ss
sys = ss
sys = ss
Inputs
Sys
c
d
tsam
Outputs
Sys

LTI model to be converted to state-space.
State matrix (n-by-n).
Input matrix (n-by-m).

Output matrix (p-by-n). If ¢ is empty [] or not specified, an identity matrix is
assumed.

Feedthrough matrix (p-by-m). If d is empty [] or not specified, a zero matrix is
assumed.

Sampling time in seconds. If tsam is not specified, a continuous-time model is
assumed.

Optional pairs of properties and values. Type set (ss) for more information.

State-space model.

Option Keys and Values

7a7, 7b7’ ’C’, 7d7} 767

'stname’

'scaled’

'tsam’

Inname’

State-space matrices. See 'Inputs’ for details.

The name of the states in sys. Cell vector containing strings for each state.
Default names are {’x1’, ’x2°, ...}

Logical. If set to true, no automatic scaling is used, e.g. for frequency response
plots.

Sampling time. See ’'Inputs’ for details.

The name of the input channels in sys. Cell vector of length m containing strings.
Default names are {’ul1’, ’u2’, ...}

Chapter 2: Linear Time Invariant Models

‘outname’ The name of the output channels in sys. Cell vector of length p containing strings.
Default names are {’y1’, ’y2°, ...}

‘ingroup’ Struct with input group names as field names and vectors of input indices as field
values. Default is an empty struct.

‘outgroup’ Struct with output group names as field names and vectors of output indices as
field values. Default is an empty struct.

‘name’ String containing the name of the model.
‘notes’ String or cell of string containing comments.

‘'userdata’ Any data type.

Equations
x=Ax+Bu
y=Cx+Du

Example
octave:1> a = [1 2 3; 45 6; 7 8 9];
octave:2> b = [10; 11; 12];
octave:3> stname = {’V’, ’A’, ’kJ’};

octave:4> sys = ss (a, b, ’stname’, stname)

sys.a =
Vv A kJ
\ 1 2 3
A 4 5 6
kI 7 8 9
sys.b =
ul
v 10
A 11
kJ 12
sys.c =
V A kJ
y1 1 0 O
y2 0 1 0
y3. 0 O 1
sys.d =
ul
yl O
y2 O
y3 O

Continuous-time model.
octave:5>

See also: tf, dss.

Chapter 2: Linear Time Invariant Models

2.5 tf
s = tf (’s’) [Function File]
z = tf (’z’, tsam) [Function File]
sys = tf (sys) [Function File]
sys = tf (mat, ...) [Function File]
sys = tf (num, den, ...) [Function File]
sys = tf (num, den, tsam, ...) [Function File]
Create or convert to transfer function model.
Inputs
Sys LTI model to be converted to transfer function.
mat Gain matrix to be converted to static transfer function.
num Numerator or cell of numerators. Each numerator must be a row vector con-
taining the coefficients of the polynomial in descending powers of the transfer
function variable. numf{i,j} contains the numerator polynomial from input j to
output i. In the SISO case, a single vector is accepted as well.
den Denominator or cell of denominators. Each denominator must be a row vector
containing the coefficients of the polynomial in descending powers of the transfer
function variable. den{i,j} contains the denominator polynomial from input j to
output i. In the SISO case, a single vector is accepted as well.
tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is
assumed.
Optional pairs of properties and values. Type set (tf) for more information.
Outputs
Sys Transfer function model.

Option Keys and Values

‘num’

’den’
‘tfvar’
inv’

‘tsam’

‘iInname’

‘outname’

‘ingroup’

‘outgroup’

‘name’
‘notes’

‘userdata’

Numerator. See 'Inputs’ for details.

Denominator. See 'Inputs’ for details.

String containing the transfer function variable.

Logical. True for negative powers of the transfer function variable.
Sampling time. See ’Inputs’ for details.

The name of the input channels in sys. Cell vector of length m containing strings.
Default names are {’ul1’, ’u2’, ...}

The name of the output channels in sys. Cell vector of length p containing strings.
Default names are {*y1’, ’y2’, ...}

Struct with input group names as field names and vectors of input indices as field
values. Default is an empty struct.

Struct with output group names as field names and vectors of output indices as
field values. Default is an empty struct.

String containing the name of the model.
String or cell of string containing comments.

Any data type.

10

Example

Chapter 2: Linear Time Invariant Models

octave:1> s = tf (’s?);

octave:2> G = 1/(s+1)
Transfer function ’G’ from input ’ul’ to
1
yl: -———-
s +1

Continuous-time model.

tf (’z’, 0.2);
0.095/(2z-0.9)

octave:3> z
octave:4> H

Transfer function ’H’ from input ’ul’ to
0.095

yl: -——————-
z - 0.9

Sampling time: 0.2 s
Discrete-time model.

octave:5> num = {[1, 5, 71, [1]; [1, 71,
octave:6> den

octave:7> sys

tf (num, den)

output ...

output ...

[1, 5, 51}; =

{[1, 5, 6], [1, 2]; [1, 8, 6], [1, 3, 2]1};

Transfer function ’sys’ from input ’ul’ to output ... =

s2 + 8 s + 6

Chapter 2: Linear Time Invariant Models 11

Transfer function ’sys’ from input ’u2’ to output ...

1
yl: --—-——-
s + 2
s/2+5s+5
y2: —mmm————————-

Continuous-time model.
octave:8>

See also: filt, ss, dss.

2.6 zpk

s = zpk (’s”’) Function File

s []

z = zpk (’z’, tsam) [Function File]
sys = zpk (sys) [Function File]
sys = zpk (k, .) [Function File]
sys = zpk (z,p, k, ...) [Function File]
sys = zpk (z, p, k tsam, ...) [Function File]
[]

sys = zpk (z, p, k, tsam, ...) Function File
Create transfer function model from zero-pole-gain data. This is just a stop-gap compatibility
wrapper since zpk models are not yet implemented.

Inputs

Sys LTI model to be converted to transfer function.

z Cell of vectors containing the zeros for each channel. z{i,j} contains the zeros
from input j to output i. In the SISO case, a single vector is accepted as well.

p Cell of vectors containing the poles for each channel. p{i,j} contains the poles
from input j to output i. In the SISO case, a single vector is accepted as well.

k Matrix containing the gains for each channel. k(i,j) contains the gain from input
j to output i.

tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is
assumed.
Optional pairs of properties and values. Type set (tf) for more information.

Outputs

Sys Transfer function model.

See also: tf, ss, dss, frd.

12 Chapter 3: Model Data Access

3 Model Data Access

3.1 @lti/dssdata

la, b, ¢, d, e, tsam] = dssdata (sys) [Function File]

la, b, ¢, d, e, tsam] = dssdata (sys, []) [Function File]
Access descriptor state-space model data. Argument sys is not limited to descriptor state-
space models. If sys is not a descriptor state-space model, it is converted automatically.

Inputs

Sys Any type of LTI model.

[] In case sys is not a dss model (descriptor matrix e empty), dssdata (sys, [])
returns the empty element e = [] whereas dssdata (sys) returns the identity
matrix e = eye (size (a)).

Outputs

a State matrix (n-by-n).

b Input matrix (n-by-m).

c Measurement matrix (p-by-n).

d Feedthrough matrix (p-by-m).

e Descriptor matrix (n-by-n).

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

3.2 @lti/filtdata

[num, den, tsam] = filtdata (sys) [Function File]

[num, den, tsam] = filtdata (sys, "vector") [Function File]
Access discrete-time transfer function data in DSP format. Argument sys is not limited to
transfer function models. If sys is not a transfer function, it is converted automatically.

Inputs
Sys Any type of discrete-time LTI model.

n Vll n VeCtOI'"
For SISO models, return num and den directly as column vectors instead of cells
containing a single column vector.

Outputs

num Cell of numerator(s). Each numerator is a row vector containing the coefficients
of the polynomial in ascending powers of z°-1. num{i,j} contains the numerator
polynomial from input j to output i. In the SISO case, a single vector is possible
as well.

den Cell of denominator(s). Each denominator is a row vector containing the co-

efficients of the polynomial in ascending powers of z~-1. den{i,j} contains the
denominator polynomial from input j to output i. In the SISO case, a single
vector is possible as well.

tsam Sampling time in seconds. If tsam is not specified, -1 is returned.

Chapter 3: Model Data Access 13

3.3 @lti/frdata

[H, w, tsam] = frdata (sys) [Function File]

[H, w, tsam] = frdata (sys, "vector") [Function File]
Access frequency response data. Argument sys is not limited to frequency response data
objects. If sys is not a frd object, it is converted automatically.

Inputs
Sys Any type of LTI model.

n V"; "VeCtOT"
In case sys is a SISO model, this option returns the frequency response as a
column vector (lw-by-1) instead of an array (p-by-m-by-lw).

Outputs

H Frequency response array (p-by-m-by-lw). H(i,j,k) contains the response from
input j to output i at frequency k. In the SISO case, a vector (lw-by-1) is
possible as well.

w Frequency vector (lw-by-1) in radian per second [rad/s|. Frequencies are in as-
cending order.

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

3.4 @lti/get

get (sys) [Function File]
value = get (sys, "key") [Function File]
[vall, val2, ...] = get (sys, "keyl", "key2", ...) [Function File]

Access key values of LTI objects.

3.5 @lti/set

set (sys) [Function File]
set (sys, "key", value, ...) [Function File]
retsys = set (sys, "key", value, ...) [Function File]

Set or modify properties of LTI objects. If no return argument retsys is specified, the modified
LTT object is stored in input argument sys. set can handle multiple properties in one call: set
(sys, ’keyl’, vall, ’key2’, val2, ’key3’, val3). set (sys) prints a list of the object’s
key names.

3.6 @Ilti/ssdata

la, b, ¢, d, tsam] = ssdata (sys) [Function File]
Access state-space model data. Argument sys is not limited to state-space models. If sys is
not a state-space model, it is converted automatically.

Inputs

Sys Any type of LTI model.
Outputs

a State matrix (n-by-n).
b Input matrix (n-by-m).

c Measurement matrix (p-by-n).

14 Chapter 3: Model Data Access

d Feedthrough matrix (p-by-m).

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

3.7 @lti/tfdata

[num, den, tsam] = tfdata (sys) [Function File]
[num, den, tsam] = tfdata (sys, "vector") [Function File]
[num, den, tsam] = tfdata (sys, "tfpoly") [Function File]
Access transfer function data. Argument sys is not limited to transfer function models. If
sys is not a transfer function, it is converted automatically.
Inputs
Sys Any type of LTI model.

n V", n VeCtOf"
For SISO models, return num and den directly as column vectors instead of cells
containing a single column vector.

Outputs

num Cell of numerator(s). Each numerator is a row vector containing the coefficients
of the polynomial in descending powers of the transfer function variable. num{i,j}
contains the numerator polynomial from input j to output i. In the SISO case, a
single vector is possible as well.

den Cell of denominator(s). Each denominator is a row vector containing the coeffi-
cients of the polynomial in descending powers of the transfer function variable.
den{i,j} contains the denominator polynomial from input j to output i. In the
SISO case, a single vector is possible as well.

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

3.8 @lti/zpkdata

[z, p, k, tsam] = zpkdata (sys) [Function File]
[z, p, k, tsam] = zpkdata (sys, "v") [Function File]
Access zero-pole-gain data.
Inputs
Sys Any type of LTI model.

n Vll "VeCtOI'"
For SISO models, return z and p directly as column vectors instead of cells
containing a single column vector.

Outputs

z Cell of column vectors containing the zeros for each channel. z{i,j} contains the
zeros from input j to output i.

p Cell of column vectors containing the poles for each channel. p{i,j} contains the
poles from input j to output i.

k Matrix containing the gains for each channel. k(i,j) contains the gain from input

j to output i.

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

Chapter 4: Model Conversions 15

4 Model Conversions

4.1 @lti/c2d

sys = c2d (sys, tsam) [Function File]
sys = c2d (sys, tsam, method) [Function File]
sys = c2d (sys, tsam, ’prewarp’, wO) [Function File]
Convert the continuous LTI model into its discrete-time equivalent.
Inputs
Sys Continuous-time LTT model.
tsam Sampling time in seconds.
method Optional conversion method. If not specified, default method "zoh" is taken.
"zoh’ Zero-order hold or matrix exponential.
’tustin’, ’bilin’
Bilinear transformation or Tustin approximation.
‘prewarp’ Bilinear transformation with pre-warping at frequency wo.
'matched” Matched pole/zero method.
Outputs
Sys Discrete-time LTI model.

4.2 @lti/d2c

sys = d2c (sys) [Function File]
sys = d2c (sys, method) [Function File]
sys = d2c (sys, ’prewarp’, w0) [Function File]
Convert the discrete LTI model into its continuous-time equivalent.
Inputs
Sys Discrete-time LTI model.
method Optional conversion method. If not specified, default method "zoh" is taken.
'zoh’ Zero-order hold or matrix logarithm.
‘tustin’, ’bilin’
Bilinear transformation or Tustin approximation.
‘prewarp’ Bilinear transformation with pre-warping at frequency wo0.
‘'matched’ Matched pole/zero method.
Outputs

Sys Continuous-time LTT model.

16 Chapter 4: Model Conversions

4.3 @lti/d2d

sys = d2d (sys, tsam) [Function File]
sys = d2d (sys, tsam, method) [Function File]
sys = d2d (sys, tsam, ’prewarp’, wO0) [Function File]
Resample discrete-time LTT model to sampling time tsam.
Inputs
Sys Discrete-time LTI model.
tsam Desired sampling time in seconds.
method Optional conversion method. If not specified, default method "zoh" is taken.
"zoh’ Zero-order hold or matrix logarithm.
’tustin’, ’bilin’
Bilinear transformation or Tustin approximation.
‘prewarp’ Bilinear transformation with pre-warping at frequency wo.
‘'matched’ Matched pole/zero method.
Outputs
Sys Resampled discrete-time LTT model with sampling time tsam.

4.4 @lti/prescale

[scaledsys, info] = prescale (sys) [Function File]
Scale state-space model. The scaled model scaledsys is equivalent to sys, but the state vector
is scaled by diagonal transformation matrices in order to increase the accuracy of subsequent
numerical computations. Frequency response commands perform automatic scaling unless
model property scaled is set to true.

Inputs

Sys LTT model.

Outputs

scaledsys Scaled state-space model.

info Structure containing additional information.
info.SL Left scaling factors. T1 = diag (info.SL).
info.SR Right scaling factors. Tr = diag (info.SR).

Equations

Es =Tl * E x Tr
As =Tl * A x Tr

Bs =Tl * B
Cs = C *x Tr
Ds = D

For proper state-space models, TI and Tr are inverse of each other.

Algorithm
Uses SLICOT TBO1ID and TGO1AD by courtesy of NICONET e.V. (http://wuw.slicot.

org).

http://www.slicot.org
http://www.slicot.org

Chapter 4: Model Conversions 17

4.5 Qlti/xperm

retsys = xperm (sys, idx) [Function File]

Reorder states in state-space models.

Inputs

Sys State-space model.

idx Vector containing the state indices in the desired order. Alternatively, a cell
vector containing the state names is possible as well. See sys.stname. State
names only work if they were assigned explicitly before, i.e. sys.stname contains
no empty strings. Note that if certain state indices of sys are missing or appear
multiple times in idx, these states will be pruned or duplicated accordingly in
the resulting state-space model retsys.

Outputs

retsys Resulting state-space model with states reordered according to idx.

18

Chapter 5: Model Interconnections

5 Model Interconnections

5.1 append

sys = append (sysl1, sys2, ..., sysN) [Function File]
Group LTI models by appending their inputs and outputs.

5.2 @lti/blkdiag

sys = blkdiag (sys1, sys2, ..., sysN) [Function File]
Block-diagonal concatenation of LTI models.

5.3 Q@lti/connect

sys = connect (sysl1, sys2, ..., sysN, inputs, outputs) [Function File]
sys = connect (sys, cm, inputs, outputs) [Function File]
Name-based or index-based interconnections between the inputs and outputs of LTI models.
Inputs
sysl, ..., sysN
LTI models to be connected. The properties ’inname’ and ’outname’ of each
model should be set according to the desired input-output connections.
inputs For name-based interconnections, string or cell of strings containing the names
of the inputs to be kept. The names must be part of the properties ’ingroup’ or
‘inname’. For index-based interconnections, vector containing the indices of the
inputs to be kept.
outputs For name-based interconnections, string or cell of strings containing the names
of the outputs to be kept. The names must be part of the properties "outgroup’
or ’outname’. For index-based interconnections, vector containing the indices of
the outputs to be kept.
cm Connection matrix (not name-based). Each row of the matrix represents a sum-
ming junction. The first column holds the indices of the inputs to be summed
with outputs of the subsequent columns. The output indices can be negative, if
the output is to be substracted, or zero. For example, the row
[2 03 -4 0]
or
[2 -4 3]
will sum input u(2) with outputs y(3) and y(4) as
u(2) + y(3) - y4).
Outputs
Sys Resulting interconnected system with outputs outputs and inputs inputs.

See also: sumblk.

Chapter 5: Model Interconnections 19

5.4 @lti/feedback

sys = feedback (sys1) []
sys = feedback (sysi1, "+") []
sys = feedback (sys1, sysZ2) [Function File]
sys = feedback (sysi1, sys2, "+") [|
sys = feedback (sysl1, sys2, feedin, feedout) [|
sys = feedback (sysl, sys2, feedin, feedout, "+") []

Function File
Function File

Function File
Function File
Function File

Feedback connection of two LTI models.

Inputs

sys1 LTI model of forward transmission. [pl, m1] = size (sysl).

sys2 LTI model of backward transmission. If not specified, an identity matrix of
appropriate size is taken.

feedin Vector containing indices of inputs to sysl which are involved in the feedback
loop. The number of feedin indices and outputs of sys2 must be equal. If not
specified, 1:m1 is taken.

feedout Vector containing indices of outputs from sysl which are to be connected to sys2.
The number of feedout indices and inputs of sys2 must be equal. If not specified,
1:p1 is taken.

S Positive feedback sign. If not specified, "-" for a negative feedback interconnec-
tion is assumed. +1 and -1 are possible as well, but only from the third argument
onward due to ambiguity.

Outputs

Sys Resulting LTT model.

Block Diagram

u + e + y
—————— >(+)----=>| sysl |-——————4-———--->

~ - +o— + |

| |

| Ao + |

o | sys2 |<———--- +

R +

5.5 @lti/1ft
sys = 1ft (sysli, sys2) [Function File]
sys = 1ft (sysl1, sys2, nu, ny) [Function File]

Linear fractional tranformation, also known as Redheffer star product.

Inputs

sysl1 Upper LTI model.

sys2 Lower LTI model.

nu The last nu inputs of sysl are connected with the first nu outputs of sys2. If not
specified, min (m1, p2) is taken.

ny The last ny outputs of sysl are connected with the first ny inputs of sys2. If not

specified, min (p1, m2) is taken.

20 Chapter 5: Model Interconnections

Outputs
Sys Resulting LTT model.
Block Diagram

............. SYS. it =
o +
wl —————————- >| | ————————- >zl
| sys1l |
u +-——->| | ————- +y
| Hommm—o - + (I Lower LFT
| |
| o + | : 1ft (sysl, sys2)
== | sys2 |[<-———+
oo +
............. SYS. i =
oo +
u +-—-->| sysl |---—- +y o
| Fo—mm——— + | : Upper LFT
| |
| Fommm + I : 1ft (sysl, sys2)
+-———- | | <————+
| sys2 |
Zz2 <———————————- | | <===————————- w2
oo +
............. SYS. it =
Fommm - +
wl - >| | -—————————— >zl
| sysl |
u +---=>| | -———- +y
| Fommm e + |
| | : 1ft (sysl, sys2, nu, ny)
| o + |
+-———- | | <————+
| sys2 |
Zz2 <———————————- | | <=—=————————- w2
Fommm - +
5.6 @lti/mconnect
sys = mconnect (sys, m) [Function File]
sys = mconnect (sSys, m, inputs, outputs) [Function File]

Arbitrary interconnections between the inputs and outputs of an LTI model.

Inputs
Sys LTT system.

Chapter 5: Model Interconnections 21

inputs

outputs

Outputs

Sys
Example

Connection matrix. Each row belongs to an input and each column represents
an output.

Vector of indices of those inputs which are retained. If not specified, all inputs
are kept.

Vector of indices of those outputs which are retained. If not specified, all outputs
are kept.

Interconnected system.

Solve the system equations of

y(t) = G e(t)

e(t) = u(t) + M y(t)

in order to build

y(t) = H u(t)

The matrix M for a (p-by-m) system G
has m rows and p columns (m-by-p).

Example for a 3x2 system:
ul = -1*xyl + b5xy2 + O*y3
u2 = pixyl + O*y2 - 7xy3

| -1 5 0|
M= pi 0 7|
5.7 @lti/parallel
sys = parallel (sysi, sys2) [Function File]

Parallel connection of two LTI systems.

Block Diagram

Fomm— +
+-=>| sysl |-——+
u I + |+ y
——————— + I
| to——————— + | +
+-=>| sys2 |---+
Fomm +
.......... SYS. et

sys = parallel (sysl, sys2)

5.8 @Ilti/series

sys = series (sysl, sys2) [Function File]
sys = series (sysl, sys2, outputsl, inputs2) [Function File]
Series connection of two LTI models.

Block Diagram

22 Chapter 5: Model Interconnections

v2 - +
---------- >| | y

Hommmm + y1 u2 | sys2 |--—-—-- >
u | | -—==mm- >| |
—————— >| sysl | zl +-———————+

| | -===- >

e +

................. SYS . iii i

outputsl = [1]
inputs2 = [2]
sys = series (sysl, sys2, outputsl, inputs2)

5.9 sumblk
S = sumblk (formula) [Function File]
S = sumblk (formula, n) [Function File]

Create summing junction S from string formula for name-based interconnections.

Inputs

formula String containing the formula of the summing junction, e.g. e =r -y +d
n Signal size. Default value is 1.

Outputs

S State-space model of the summing junction.

Example

Chapter 5: Model Interconnections

octave:1> S = sumblk (’e

Static gain.

octave:2> S = sumblk (’e

S.d =
rl r2 yl1 y2
el 1 0 -1 O
e2 0 1 0 -1

Static gain.

See also: connect.

d1
1
0

r-y+d)

r-y+d, 2

d2
0
1

24 Chapter 6: Model Characteristics

6 Model Characteristics

6.1 ctrb
co = ctrb (sys) [Function File]
co = ctrb (a, b) [Function File]

Return controllability matrix.

Inputs

Sys LTI model.

a State matrix (n-by-n).

b Input matrix (n-by-m).

Outputs

co Controllability matrix.

Equation

C,=[B AB A’B ... A" 'B|

6.2 ctrbf

[sysbar, T, K] = ctrbf (sys) [Function File]
[sysbar, T, K] = ctrbf (sys, tol) [Function File]
[}

}

[Abar, Bbar, Cbar, T, K] ctrbf (4, B, C) Function File

[Abar, Bbar, Cbar, T, K] ctrbf (4, B, C, TOL) [Function File
If Co=ctrb(A,B) has rank r <= n = SIZE(A,1), then there is a similarity transformation Tc
such that Tc = [t1 t2] where t1 is the controllable subspace and t2 is orthogonal to t1

Abar = Tc \ A * Tc , Bbar = Tc \ B, Cbar = C * Tc

and the transformed system has the form

| Ac A12] | Bc |
Abar = |-————————- |, Bbar = | -——-|, Cbar = [Cc | Cnc].
| 0 Anc| | 0 |

where (Ac,Bc) is controllable, and Cc(sI-Ac)~(-1)Bc = C(sI-A)~(-1)B. and the system is
stabilizable if Anc has no eigenvalues in the right half plane. The last output K is a vector
of length n containing the number of controllable states.

6.3 Qlti/dcgain

k = dcgain (sys) [Function File]
DC gain of LTI model.
Inputs
sys LTT system.
Outputs
k DC gain matrice. For a system with m inputs and p outputs, the array k has

dimensions [p, m].

See also: freqresp.

Chapter 6: Model Characteristics 25

6.4 gram
W = gram (sys, mode) [Function File]
Wc = gram (a, b) [Function File]

gram (sys, "c") returns the controllability gramian of the (continuous- or discrete-time) sys-
tem sys. gram (sys, "o") returns the observability gramian of the (continuous- or discrete-
time) system sys. gram (a, b) returns the controllability gramian We of the continuous-time
system dzx/dt = ax + bu; i.e., We satisfies alWe + mW¢c' + bb = 0.

6.5 hsvd

hsv = hsvd (sys) [Function File]
hsv = hsvd (sys, "offset", offset) [Function File]
hsv = hsvd (sys, "alpha", alpha) [Function File]

Hankel singular values of the stable part of an LTI model. If no output arguments are given,
the Hankel singular values are displayed in a plot.

Algorithm

Uses SLICOT AB13AD by courtesy of NICONET e.V. (http://www.slicot.org)

6.6 @lti/isct

bool = isct (sys) [Function File]
Determine whether LTT model is a continuous-time system.

Inputs

sys LTT system.

Outputs

bool = 0 sys is a discrete-time system.

bool =1 sysis a continuous-time system or a static gain.

6.7 isctrb

[bool, ncon] = isctrb (sys) [Function File]

[bool, ncon] = isctrb (sys, tol) [Function File]

[bool, ncon] = isctrb (a, b) [Function File]

[bool, ncon] = isctrb (a, b, e) [Function File]

[bool, ncon] = isctrb (a, b, [], tol) [Function File]

[bool, ncon] = isctrb (a, b, e, tol) [Function File]
Logical check for system controllability. For numerical reasons, isctrb (sys) should be used
instead of rank (ctrb (sys)).

Inputs

Sys LTT model. Descriptor state-space models are possible. If sys is not a state-space
model, it is converted to a minimal state-space realization, so beware of pole-zero
cancellations which may lead to wrong results!

a State matrix (n-by-n).

b Input matrix (n-by-m).

e Descriptor matrix (n-by-n). If e is empty []1 or not specified, an identity matrix

is assumed.

http://www.slicot.org

26 Chapter 6: Model Characteristics
tol Optional roundoff parameter. Default value is 0.
Outputs
bool = 0 System is not controllable.
bool =1 System is controllable.
ncon Number of controllable states.
Algorithm
Uses SLICOT AB010OD and TGO1HD by courtesy of NICONET e.V. (http://www.slicot.
org)

See also: isobsv.

6.8 isdetectable

bool
bool
bool
bool
bool
bool
bool
bool
bool

isdetectable

isdetectable (sys)
isdetectable (sys, tol)
isdetectable (a, ¢)
isdetectable (a, c, €)
isdetectable (a, c, [], tol)
isdetectable (a, c, e, tol)
isdetectable (a, c, [], [|, dflg)
isdetectable (a, c, e, [], dflg)
(

a’
a, c, [|, tol, dflg)

bool = isdetectable (a, c, e, tol, dflg)
Logical test for system detectability. All unstable modes must be observable or all unobserv-
able states must be stable.

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

Inputs

sys LTT system.

a State transition matrix.

c Measurement matrix.

e Descriptor matrix. If e is empty [] or not specified, an identity matrix is assumed.
tol Optional tolerance for stability. Default value is 0.

dflg = 0 Matrices (a, c¢) are part of a continuous-time system. Default Value.
dfig =1 Matrices (a, c¢) are part of a discrete-time system.

Outputs

bool = 0 System is not detectable.

bool =1 System is detectable.

Algorithm

Uses SLICOT AB010OD and TGO1HD by courtesy of NICONET e.V. (http://www.slicot.

org) See isstabilizable for description of computational method.

See also: isstabilizable, isstable, isctrb, isobsv.

http://www.slicot.org
http://www.slicot.org
http://www.slicot.org
http://www.slicot.org

Chapter 6: Model Characteristics 27

6.9 @Ilti/isdt

bool = isdt (sys) [Function File]
Determine whether LTI model is a discrete-time system.

Inputs

Sys LTI system.

Outputs

bool = 0 sys is a continuous-time system.

bool =1 sysis a discrete-time system or a static gain.

6.10 @Ilti/isminimumphase

bool = isminimumphase (sys) [Function File]

bool = isminimumphase (sys, tol) [Function File]
Determine whether LTI system has asymptotically stable zero dynamics. According to the
definition of Byrnes/Isidori [1], the zeros of a minimum-phase system must be strictly inside
the left complex half-plane (continuous-time case) or inside the unit circle (discrete-time
case). Note that the poles are not tested.

M. Zeitz [2] discusses the inconsistent definitions of the minimum-phase property in a German
paper. The abstract in English states the following [2]:

Originally, the minimum phase property has been defined by H. W. Bode [3] in order to
characterize the unique relationship between gain and phase of the frequency response. With
regard to the design of digital filters, another definition of minimum phase is used and a
filter is said to be minimum phase if both the filter and its inverse are asymptotically stable.
Finally, systems with asymptotically stable zero dynamics are named as minimum phase by
C. I. Byrnes and A. Isidori [1]. Due to the inconsistent definitions, avoiding the minimum
phase property for control purposes is advocated and the well-established criteria of Hurwitz
or Ljapunow to describe the stability of filters and zero dynamics are recommended.

Inputs
sys LTT system.
tol Optional tolerance. tol must be a real-valued, non-negative scalar. Default value
is 0.
Outputs
bool True if the system is minimum-phase and false otherwise.
real (z) < -tolx(1 + abs (z)) continuous-time
abs (z) < 1 - tol discrete-time
References

[1] Byrnes, C.I. and Isidori, A. A Frequency Domain Philosophy for Nonlinear Systems. IEEE
Conf. Dec. Contr. 23, pp. 15691573, 1984.

[2] Zeitz, M. Minimum phase no relevant property of automatic controll. at Automa-
tisierungstechnik. Volume 62, Issue 1, pp. 310, 2014.

[3] Bode, H.-W. Network Analysis and Feedback Amplifier Design. D. Van Nostrand Company,
pp. 312-318, 1945. pp. 341-351, 1992.

28

Chapter 6: Model Characteristics

6.11 isobsv

[bool, nobs] = isobsv (sys) [
[bool, nobs] = isobsv (sys, tol) [
[bool, nobs] = isobsv (a, c) [Function File
[bool, nobs] = isobsv (a, c, €) [
[bool, nobs] = isobsv (a, c, [|, tol) [
[bool, nobs] = isobsv (a, c, e, tol) [

Function File]
Function File

Function File

}
}
Function File]
}
Function File]

Logical check for system observability. For numerical reasons, isobsv (sys) should be used
instead of rank (obsv (sys)).

Inputs
Sys

a

c

e

tol

Outputs
bool = 0
bool =1

nobs

Algorithm

LTI model. Descriptor state-space models are possible.
State matrix (n-by-n).
Measurement matrix (p-by-n).

Descriptor matrix (n-by-n). If e is empty [] or not specified, an identity matrix
is assumed.

Optional roundoff parameter. Default value is 0.

System is not observable.
System is observable.

Number of observable states.

Uses SLICOT AB010OD and TGO1HD by courtesy of NICONET e.V. (http://www.slicot.

org)

See also:

isctrb.

6.12 @Ilti/issiso

bool = issiso (sys) [Function File]
Determine whether LTI model is single-input/single-output (SISO).

6.13 isstabilizable

bool = isstabilizable (sys)
bool = isstabilizable (sys, tol)
bool = isstabilizable (a, b)

Function File
Function File
Function File

bool = isstabilizable (a, b, e) Function File
bool = isstabilizable (a, b, e, tol) Function File
bool = isstabilizable (a, b, [, [], df1g) Function File

bool = isstabilizable (a, b, e, [|, df1g)

[]

[]

[]

b []
bool = isstabilizable (a, b, [], tol) [Function File]
b []
| %

bool = isstabilizable (a, b, [|, tol, dflg) []
]

Function File
Function File

bool = isstabilizable (a, b, e, tol, dflg) [Function File
Logical check for system stabilizability. All unstable modes must be controllable or all un-
controllable states must be stable.

Inputs

http://www.slicot.org
http://www.slicot.org

Chapter 6: Model Characteristics 29

Sys
a

b

e

tol

dflg =0
dflg =1
Outputs
bool = 0
bool = 1
Algorithm

LTI system. If sys is not a state-space system, it is converted to a minimal state-
space realization, so beware of pole-zero cancellations which may lead to wrong
results!

State transition matrix.

Input matrix.

Descriptor matrix. If e is empty [1 or not specified, an identity matrix is assumed.
Optional tolerance for stability. Default value is 0.

Matrices (a, b) are part of a continuous-time system. Default Value.

Matrices (a, b) are part of a discrete-time system.

System is not stabilizable.

System is stabilizable.

Uses SLICOT AB010D and TGO1HD by courtesy of NICONET e.V. (http://www.slicot.

org)

Calculate staircase form (SLICOT AB0O10D)

Extract unobservable part of state transition matrix
Calculate eigenvalues of unobservable part

Check whether

real (ev) < -tol*(1 + abs (ev)) continuous-time
abs (ev) < 1 - tol discrete-time

* ¥ X %

See also: isdetectable, isstable, isctrb, isobsv.

6.14 @lti/isstable

bool = isstable (sys) [Function File]
bool = isstable (sys, tol) [Function File]

Determine whether LTT system is stable.

Inputs

sys LTT system.

tol Optional tolerance for stability. tol must be a real-valued, non-negative scalar.

Default value is 0.
Outputs
bool True if the system is stable and false otherwise.

real (p) < -tol*(1 + abs (p)) continuous-time
abs (p) <1 - tol discrete-time

http://www.slicot.org
http://www.slicot.org

30 Chapter 6: Model Characteristics

6.15 @lti/norm

gain = norm (sys, 2) [Function File]
[gain, wpeak] = norm (sys, inf) [Function File]
[gain, wpeak] = norm (sys, inf, tol) [Function File]
Return H-2 or L-inf norm of LTI model.
Algorithm

Uses SLICOT AB13BD and AB13DD by courtesy of NICONET e.V. (http://www.slicot.
org)

6.16 obsv

ob = obsv (sys) [Function File]
ob = obsv (a, ¢) [Function File]
Return observability matrix.

Inputs

Sys LTT model.

a State matrix (n-by-n).

c Measurement matrix (p-by-n).
Outputs

ob Observability matrix.

Equation
C
CA
O,=| CA?

can
6.17 obsvf

[sysbar, T, K] = obsvf (sys) [Function File

[sysbar, T, K] = obsvf (sys, tol) [Function File

[Abar, Bbar, Cbar, T, K] obsvf (4, B, C) [Function File

[Abar, Bbar, Cbar, T, K] obsvf (4, B, C, TOL) [Function File
If Ob=obsv(A,C) has rank r <= n = SIZE(A,1), then there is a similarity transformation Tc
such that To = [t1;t2] where t1 is ¢ and t2 is orthogonal to t1

Abar = To \ A * To , Bbar = To \ B, Cbar = C * To

]
}
}
]

and the transformed system has the form

| Ao 0 | | |
Avar = |[-————————- |, Bbar = | --—- |, Cbar = [Co | O].
| A21 Anol | |

where (Ao,Bo) is observable, and Co(sl-Ao)~(-1)Bo = C(sI-A)~(-1)B. And system is de-
tectable if Ano has no eigenvalues in the right half plane. The last output K is a vector of
length n containing the number of observable states.

http://www.slicot.org
http://www.slicot.org

Chapter 6: Model Characteristics 31

6.18 @lti/pole

p = pole (sys) [Function File]
Compute poles of LTT system.
Inputs

Sys LTI model.
Outputs
p Poles of sys.

Algorithm

For (descriptor) state-space models, pole relies on Octave’s eig. For SISO transfer functions,
pole uses Octave’s roots. MIMO transfer functions are converted to a minimal state-space
representation for the computation of the poles.

6.19 pzmap

pzmap (sys) [Function File]

pzmap (sysl1, sys2, ..., sysN) [Function File]

pzmap (sysl1, ’stylel’, ..., sysN, ’styleN’) [Function File]
[|

[p, z] = pzmap (sys) Function File
Plot the poles and zeros of an LTI system in the complex plane. If no output arguments are
given, the result is plotted on the screen. Otherwise, the poles and zeros are computed and
returned.

Inputs

sys LTT model.

'style’ Line style and color, e.g. ’r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.

Outputs

p Poles of sys.

z Invariant zeros of sys.

6.20 Qlti/size

nvec = size (sys) [Function File]
n = size (sys, dim) [Function File]
[p, m] = size (sys) [Function File]
LTT model size, i.e. number of outputs and inputs.
Inputs
sys LTT system.
dim If given a second argument, size will return the size of the corresponding dimen-
sion.
Outputs
nvec Row vector. The first element is the number of outputs (rows) and the second
element the number of inputs (columns).
n Scalar value. The size of the dimension dim.
P Number of outputs.

m Number of inputs.

32 Chapter 6: Model Characteristics

6.21 @lti/zero

z = zero (sys) [Function File]
z = zero (sys, type) [Function File]
[z, k, info] = zero (sys) [Function File]

Compute zeros and gain of LTI model. By default, zero computes the invariant zeros, also
known as Smith zeros. Alternatively, when called with a second input argument, zero can also
compute the system zeros, transmission zeros, input decoupling zeros and output decoupling
zeros. See paper [1] for an explanation of the various zero flavors as well as for further details.

Inputs
Sys LTT model.

type String specifying the type of zeros:

da?

'system’, ’s
Compute the system zeros. The system zeros include in all cases
(square, non-square, degenerate or non-degenerate system) all trans-
mission and decoupling zeros.

‘invariant’, 'inv’
Compute invariant zeros. Default selection.
’transmission’, ’t’
Compute transmission zeros. Transmission zeros are a subset of the
invariant zeros. The transmission zeros are the zeros of the Smith-
McMillan form of the transfer function matrix.
‘input’, ’inp’, ’id’
Compute input decoupling zeros. The input decoupling zeros are
also known as the uncontrollable eigenvalues of the pair (A,B).
‘output’, 'o’, ’od’
Compute output decoupling zeros. The output decoupling zeros are
also known as the unobservable eigenvalues of the pair (A,C).

Outputs

z Depending on argument type, z contains the invariant (default), system, trans-
mission, input decoupling or output decoupling zeros of sys as defined in [1].

k Gain of SISO system sys. For MIMO systems, an empty matrix [] is returned.

info Struct containing additional information. For details, see the documentation of
SLICOT routines ABOSND and AGO8BD.

info.rank The normal rank of the transfer function matrix (regular state-space models) or
of the system pencil (descriptor state-space models).

info.infz Contains information on the infinite elementary divisors as follows: the
system has info.infz(i) infinite elementary divisors of degree i, where
i=1,2,...,length(info.infz).

info.kronr Right Kronecker (column) indices.
info.kronl Left Kronecker (row) indices.

Examples

Chapter 6: Model Characteristics 33

invariant zeros

system zeros

invariant zeros
transmission zeros
output decoupling zeros
input decoupling zeros

[z, k, info] = zero (sys)

z = zero (sys, ’system’)

= zero (sys, ’invariant’)

= zero (sys, ’transmission’)
= zero (sys, ’output’)

= zero (sys, ’input’)

H H H H HH

N N N N

Algorithm

For (descriptor) state-space models, zero relies on SLICOT ABO8ND and AG0O8BD by cour-
tesy of NICONET e.V. (http://www.slicot.org) For SISO transfer functions, zero uses
Octave’s roots. MIMO transfer functions are converted to a minimal state-space represen-
tation for the computation of the zeros.

References

[1] MacFarlane, A. and Karcanias, N. Poles and zeros of linear multivariable systems: a sur-
vey of the algebraic, geometric and complex-variable theory. Int. J. Control, vol. 24, pp.
33-74, 1976.

[2] Rosenbrock, H.H. Correction to "The zeros of a system’. Int. J. Control, vol. 20, no. 3,
pp. 525-527, 1974.

[3] Svaricek, F. Computation of the structural invariants of linear multivariable systems with
an extended version of the program ZERQOS. Systems & Control Letters, vol. 6, pp. 261-266,
1985.

[4] Emami-Naeini, A. and Van Dooren, P. Computation of zeros of linear multivariable sys-
tems. Automatica, vol. 26, pp. 415-430, 1982.

http://www.slicot.org

34 Chapter 7: Model Simplification

7 Model Simplification

7.1 Qlti/minreal

sys = minreal (sys) [Function File]
sys = minreal (sys, tol) [Function File]
Minimal realization or zero-pole cancellation of LTI models.

7.2 @lti/sminreal

sys = sminreal (sys) [Function File]

sys = sminreal (sys, tol) [Function File]
Perform state-space model reduction based on structure. Remove states which have no influ-
ence on the input-output behaviour. The physical meaning of the states is retained.

Inputs

Sys State-space model.

tol Optional tolerance for controllability and observability. Entries of the state-space
matrices whose moduli are less or equal to tol are assumed to be zero. Default
value is 0.

Outputs

Sys Reduced state-space model.

See also: minreal.

Chapter 8: Time Domain Analysis 35

8 Time Domain Analysis

8.1 covar
[p, q] = covar (sys, w) [Function File]
Return the steady-state covariance.
Inputs
Sys LTT model.
w Intensity of Gaussian white noise inputs which drive sys.
Outputs
p Output covariance.
q State covariance.

See also: lyap, dlyap.

8.2 gensig

[u, t] = gensig (sigtype, tau) [Function File]
[u, t] = gensig (sigtype, tau, tfinal) [Function File]
[u, t] = gensig (sigtype, tau, tfinal, tsam) [Function File]
Generate periodic signal. Useful in combination with lsim.
Inputs
sigtype = "sin"
Sine wave.
sigtype = "cos"
Cosine wave.
sigtype = "square"
Square wave.
sigtype = "pulse"
Periodic pulse.
tau Duration of one period in seconds.
tfinal Optional duration of the signal in seconds. Default duration is 5 periods.
tsam Optional sampling time in seconds. Default spacing is tau/64.
Outputs
u Vector of signal values.
t Time vector of the signal.

See also: Isim.

36

Chapter 8: Time Domain Analysis

8.3 impulse

impulse (sys)
impulse (sysl1, sys2, ...,
impulse (sysl1,
impulse (sys1,
impulse (sys1,
impulse (sysl1,

[y, t, x]
[y, t, x]
ly, t, xJ
[y, t, x]

= impulse (sys, t)

Function File]

sysN) Function File

’stylel’, ..., sysN, ’styleN’) Function File
, t) Functlon F 11e
, tfinal)
, tfinal, dt)

impulse (sys)
Function File
Function File
[Function File

impulse (sys, tfinal)

]

]

]

]

Functlon Flle]

]

|

impulse (sys, tfinal, dt)]

Impulse response of LTI system. If no output arguments are given, the response is printed
on the screen.

Inputs

Sys
t

tfinal

dt

'style’

Outputs
y

t

X

LTI model.

Time vector. Should be evenly spaced. If not specified, it is calculated by the
poles of the system to reflect adequately the response transients.

Optional simulation horizon. If not specified, it is calculated by the poles of the
system to reflect adequately the response transients.

Optional sampling time. Be sure to choose it small enough to capture transient
phenomena. If not specified, it is calculated by the poles of the system.

Line style and color, e.g. '’ for a solid red line or ’-.k’ for a dash-dotted black

line. See help plot for details.

Output response array. Has as many rows as time samples (length of t) and as
many columns as outputs.

Time row vector.

State trajectories array. Has length (t) rows and as many columns as states.

See also: initial, Isim, step.

8.4 initial

initial (sys, x0) [Function File]
initial (sys1, sys2, ..., sysN, x0) [Function File]
initial (sys1, ’stylel’, ..., sysN, ’styleN’, x0) [Function File]
initial (sys1, ..., x0, t) [Function File]
initial (sys1, ..., x0, tfinal) [Function File]
initial (sys1, ..., x0, tfinal, dt) [Function File]
[y, t, x] = initial (sys, x0) [Function File]
[y, t, x] = initial (sys, x0, t) [Function File]
[y, t, x] = initial (sys, x0, tfinal) [Function File]
[y, t, x] = initial (sys, x0, tfinal, dt) [Function File]

Initial condition response of state-space model. If no output arguments are given, the response
is printed on the screen.

Inputs
Sys

State-space model.

Chapter 8: Time Domain Analysis 37

x0 Vector of initial conditions for each state.

t Optional time vector. Should be evenly spaced. If not specified, it is calculated
by the poles of the system to reflect adequately the response transients.

tfinal Optional simulation horizon. If not specified, it is calculated by the poles of the
system to reflect adequately the response transients.

dt Optional sampling time. Be sure to choose it small enough to capture transient
phenomena. If not specified, it is calculated by the poles of the system.

'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.
Outputs
y Output response array. Has as many rows as time samples (length of t) and as
many columns as outputs.
t Time row vector.
b'e State trajectories array. Has length (t) rows and as many columns as states.
Example
Continuous Time: x=Ax, y=Cx, x(0) = xO0
Discrete Time: x[k+1] = A x[k] , ylk]l =C x[k] , =x[0] = x0

See also: impulse, Isim, step.

[y, t, x] = 1sim (sys, u) Function File

1sim (sys, u, t) Function File

[y, t, x] = 1lsim (sys, u, t, x0) [Function File
Simulate LTI model response to arbitrary inputs. If no output arguments are given, the
system response is plotted on the screen.

,_|
=
c+
>4
o
I

8.5 Isim
1lsim (sys, u) [Function File]
1lsim (sys1, sys2, ..., sysN, u) [Function File]
lsim (sys1, ’stylel’, ..., sysN, ’styleN’, u) [Function File]
lsim (sysi, ..., u, t) [Function File]
1lsim (sys1, ..., u, t, x0) [Function File]
[]
[]
]

Inputs

Sys LTI model. System must be proper, i.e. it must not have more zeros than poles.

u Vector or array of input signal. Needs length(t) rows and as many columns
as there are inputs. If sys is a single-input system, row vectors u of length
length(t) are accepted as well.

t Time vector. Should be evenly spaced. If sys is a continuous-time system and ¢
is a real scalar, sys is discretized with sampling time tsam = t/(rows (u)-1). If
sys is a discrete-time system and t is not specified, vector t is assumed to be 0 :
tsam : tsam*(rows(u)-1).

x0 Vector of initial conditions for each state. If not specified, a zero vector is as-

sumed.

38

'style’

Outputs

y

t

X

Chapter 8: Time Domain Analysis

Line style and color, e.g. ’r’ for a solid red line or ’-.k’ for a dash-dotted black

line. See help plot for details.

Output response array. Has as many rows as time samples (length of t) and as
many columns as outputs.

Time row vector. It is always evenly spaced.

State trajectories array. Has length (t) rows and as many columns as states.

See also: impulse, initial, step.

8.6 ramp
ramp (sys) [Function File]
ramp (sysl1, sys2 , sysN) [Function File]
ramp (sysl1, ’stylel’, ..., sysN, ’styleN’) [Function File]
ramp (sysi, ..., t) [Function File]
ramp (sysl1, ..., tfinal) [Function File]
ramp (sysl1, ..., tfinal, dt) [Function File]
[y, t, x] = ramp (sys) [Function File]
[y, t, x] = ramp (sys, t) [Function File]
ly, t, x] = ramp (sys, tfinal) [Function File]
ly, t, x] = ramp (sys, tfinal, dt) [Function File]
Ramp response of LTI system. If no output arguments are given, the response is printed on
the screen.
r(t) =t - h(t)
Inputs
Sys LTT model.
t Time vector. Should be evenly spaced. If not specified, it is calculated by the
poles of the system to reflect adequately the response transients.
tfinal Optional simulation horizon. If not specified, it is calculated by the poles of the
system to reflect adequately the response transients.
dt Optional sampling time. Be sure to choose it small enough to capture transient
phenomena. If not specified, it is calculated by the poles of the system.
'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.
Outputs
y Output response array. Has as many rows as time samples (length of t) and as
many columns as outputs.
t Time row vector.
b'e State trajectories array. Has length (t) rows and as many columns as states.

See also: impulse, initial, 1sim, step.

Chapter 8: Time Domain Analysis

39

8.7 step
step (sys) [Function File]
step (sys1, sys2, ..., sysN) [Function File]
step (sys1, ’stylel ’ ..., 8ysN, ’styleN’) [Function File]
step (sysi, ..., t) [Function File]
step (sys1, ..., tfinal) [Function File]
step (sys1, ..., tfinal, dt) [Function File]
[y, t, x] = step (sys) [Function File]
[y, t, x] = step (sys, t) [Function File]
[y, t, x] = step (sys, tfinal) [Function File]
[y, t, x] = step (sys, tfinal, dt) [Function File]
Step response of LTI system. If no output arguments are given, the response is printed on
the screen.
Inputs
Sys LTT model.
t Time vector. Should be evenly spaced. If not specified, it is calculated by the
poles of the system to reflect adequately the response transients.
tfinal Optional simulation horizon. If not specified, it is calculated by the poles of the
system to reflect adequately the response transients.
dt Optional sampling time. Be sure to choose it small enough to capture transient
phenomena. If not specified, it is calculated by the poles of the system.
'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.
Outputs
y Output response array. Has as many rows as time samples (length of t) and as
many columns as outputs.
t Time row vector.
X State trajectories array. Has length (t) rows and as many columns as states.

See also: impulse, initial, Isim.

40

Chapter 9: Frequency Domain Analysis

9 Frequency Domain Analysis

[mag, pha, w] = bode (sys)
[mag, pha, wl

Function File

bode (sys, w)

9.1 bode
bode (sys) [Function File]
bode (sysl1, sys2, ..., sysN) [Function File]
bode (sysl1, sys2, ..., sysN, w) [Function File]
bode (sys1, ’stylel’, ..., sysN, ’styleN?’) [Function File]
[]
]

Bode diagram of frequency response.

[Function File
If no output arguments are given, the response is

printed on the screen.

Inputs

Sys LTI system. Must be a single-input and single-output (SISO) system.

w Optional vector of frequency values. If w is not specified, it is calculated by
the zeros and poles of the system. Alternatively, the cell {wmin, wmax} speci-
fies a frequency range, where wmin and wmax denote minimum and maximum
frequencies in rad/s.

'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.

Outputs

mag Vector of magnitude. Has length of frequency vector w.

pha Vector of phase. Has length of frequency vector w.

w Vector of frequency values used.

See also: nichols, nyquist, sigma.

9.2 bodemag

bodemag (sys)

bodemag (sysl, sys2, ..., sysN)

bodemag (sysi, sys2, ..., sysN, w)

bodemag (sys1, ’stylel , ..., 8ysN, ’stylel’)

[mag, w] = bodemag (sys)

[mag, w] = bodemag (sys, w)
Bode magnitude diagram of frequency response.
response is printed on the screen.

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

If no output arguments are given, the

Inputs

SyS LTI system. Must be a single-input and single-output (SISO) system.

w Optional vector of frequency values. If w is not specified, it is calculated by
the zeros and poles of the system. Alternatively, the cell {wmin, wmax} speci-
fies a frequency range, where wmin and wmax denote minimum and maximum
frequencies in rad/s.

'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black

line. See help plot for details.
Outputs

Chapter 9: Frequency Domain Analysis 41

mag Vector of magnitude. Has length of frequency vector w.

w Vector of frequency values used.

See also: bode, nichols, nyquist, sigma.

9.3 Q@lti/freqresp

H = freqresp (sys, w) [Function File]
Evaluate frequency response at given frequencies.
Inputs
sys LTT system.
w Vector of frequency values.
Outputs
H Array of frequency response. For a system with m inputs and p outputs, the array

H has dimensions [p, m, length (w)]. The frequency response at the frequency
w(k) is given by H(:,: k).

See also: dcgain.

9.4 margin

[gamma, phi, w_gamma, w_phi] = margin (sys) [Function File]

[gamma, phi, w_gamma, w_phi] = margin (sys, tol) [Function File]
Gain and phase margin of a system. If no output arguments are given, both gain and phase
margin are plotted on a bode diagram. Otherwise, the margins and their corresponding
frequencies are computed and returned. A more robust criterion to assess the stability of a
feedback system is the sensitivity Ms computed by function sensitivity.

Inputs

Sys LTI model. Must be a single-input and single-output (SISO) system.

tol Imaginary parts below tol are assumed to be zero. If not specified, default value
sqrt (eps) is taken.

Outputs

gamma Gain margin (as gain, not dBs).

phi Phase margin (in degrees).

w_gamma Frequency for the gain margin (in rad/s).
w_phi Frequency for the phase margin (in rad/s).

Algorithm
Uses function roots to calculate the frequencies w_gamma, w_phi from special polynomials
created from the transfer function of sys as listed below in section «Equations».

Equations

42

Chapter 9: Frequency Domain Analysis

CONTINUOUS-TIME SYSTEMS =
Gain Margin

L(jw) = i(jw) BTW: i(jw) = L(-jw) = conj (L(jw))
den(jw) den(-jw)
num(jw) den(-jw) = num(-jw) den(jw)

imag (num(jw) den(-jw)) = 0
imag (num(-jw) den(jw)) =0

Phase Margin =
|num (jw) |
ILGw | = |-==———- | =1
|den(jw) |
_ 2 2
zz=Rez+ Im z

den(jw) den(-jw)

num(jw) num(-jw) - den(jw) den(-jw) = O

real (num(jw) num(-jw) - den(jw) den(-jw)) = 0
DISCRETE-TIME SYSTEMS =
Gain Margin
jwT log =z
L(z) = L(1/2) BTW: z = e -—> W = ————=
jT

num(z) num(1/z)

den(z) den(1/z)

num(z) den(1/z) - num(1/z) den(z) = 0

Phase Margin =
| num(z) |

IL(z)| = |---—-- | =1
|den(z) |

Chapter 9:

Frequency Domain Analysis 43

L(z) L(1/z) =1
num(z) num(1/z)
den(z) den(1/z)

num(z) num(1/z) - den(z) den(1/z) =0

PS: How to get L(1/z)
4 3 2
p(z) =az + bz + cz + dz + e

p(1/z)

[}
)
N

+
o
N

+
o
N
+
Q.
N
+
)

(ez + dz + cz + bz + a)/ (z)

See also: sensitivity, roots.

9.5 nichols

nichols (
nichols (
nichols (
nichols (

[mag, pha, w] = nichols (sys)

Function File

sys) [Function File]
sysi, sys2, ..., sysN) [Function File
sysl, sys2, ..., sysN, w) [Function File
sys1, ’stylel’, ..., sysN, ’styleN’) [

[

]
]
Function File]
]
]

[mag, pha, w] = nichols (sys, w) [Function File
Nichols chart of frequency response. If no output arguments are given, the response is printed
on the screen.

Inputs

Sys

w

'style’

Outputs
mag
pha

w

See also:

LTI system. Must be a single-input and single-output (SISO) system.

Optional vector of frequency values. If w is not specified, it is calculated by
the zeros and poles of the system. Alternatively, the cell {wmin, wmax} speci-
fies a frequency range, where wmin and wmax denote minimum and maximum
frequencies in rad/s.

Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.

Vector of magnitude. Has length of frequency vector w.
Vector of phase. Has length of frequency vector w.

Vector of frequency values used.

bode, nyquist, sigma.

44 Chapter 9: Frequency Domain Analysis

9.6 nyquist

[re, im, w] = nyquist (sys) Function File

[re, im, w] = nyquist (sys, w) Function File
Nyquist diagram of frequency response. If no output arguments are given, the response is
printed on the screen.

nyquist (sys) [Function File]
nyquist (sysi, sys2, ..., sysN) [Function File]
nyquist (sysl1, sys2, ..., sysN, w) [Function File]
nyquist (sysi1, ’stylel’, ..., sysN, ’stylel’) [Function File]
[]
[|

Inputs

Sys LTI system. Must be a single-input and single-output (SISO) system.

W Optional vector of frequency values. If w is not specified, it is calculated by
the zeros and poles of the system. Alternatively, the cell {wmin, wmax} speci-
fies a frequency range, where wmin and wmax denote minimum and maximum
frequencies in rad/s.

'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.

Outputs

re Vector of real parts. Has length of frequency vector w.

im Vector of imaginary parts. Has length of frequency vector w.

w Vector of frequency values used.

See also: bode, nichols, sigma.

9.7 sensitivity

[Ms, ws] = semnsitivity (L) [Function File]
[Ms, ws] = sensitivity (P, C) [Function File]
[Ms, ws] = sensitivity (P, C1,C2, ...) [Function File]

Return sensitivity margin Ms. The quantity Ms is simply the inverse of the shortest distance
from the Nyquist curve to the critical point -1. Reasonable values of Ms are in the range
from 1.3 to 2.

M, = ||S(]W)||oo

If no output arguments are given, the critical distance 1/Ms is plotted on a Nyquist diagram.
In contrast to gain and phase margin as computed by function margin, the sensitivity Ms is
a more robust criterion to assess the stability of a feedback system.

Inputs

L Open loop transfer function. L can be any type of LTI system, but it must be
square.

P Plant model. Any type of LTI system.

C Controller model. Any type of LTT system.

C1, C2, ...

If several controllers are specified, function sensitivity computes the sensitivity
Ms for each of them in combination with plant P.

Outputs

Chapter 9: Frequency Domain Analysis 45

wSs

Algorithm

Sensitivity margin Ms as defined in [1]. Scalar value. If several controllers are
specified, Ms becomes a row vector with as many entries as controllers.

The frequency [rad/s| corresponding to the sensitivity peak. Scalar value. If
several controllers are specified, ws becomes a row vector with as many entries
as controllers.

Uses SLICOT AB13DD by courtesy of NICONET e.V. (http://www.slicot.org) to calcu-
late the infinity norm of the sensitivity function.

References

[1] Astrom, K. and Hégglund, T. (1995) PID Controllers: Theory, Design and Tuning, Second
Edition. Instrument Society of America.

9.8 sigma

sigma (sys)

sigma (sys1,

sigma (sys1,
(

Function File

sys2, ..., sysN) Function File

[]

[]

sys2, . SysN, W) [Function File]

sigma (sys1, ’stylel ’, ..., sysN, ’styleN’) [Function File]
[sv, w] = sigma (sys) [Function File]
[sv, w] = sigma (sys, w) [Function File]

Singular values of frequency response. If no output arguments are given, the singular value
plot is printed on the screen.

Inputs

Sys

'style’

Outputs

SV

w

LTI system. Multiple inputs and/or outputs (MIMO systems) make practical
sense.

Optional vector of frequency values. If w is not specified, it is calculated by
the zeros and poles of the system. Alternatively, the cell {wmin, wmax} speci-
fies a frequency range, where wmin and wmax denote minimum and maximum
frequencies in rad/s.

Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.

Array of singular values. For a system with m inputs and p outputs, the array
sv has min (m, p) rows and as many columns as frequency points length (w).
The singular values at the frequency w(k) are given by sv(:,k).

Vector of frequency values used.

See also: bodemag, svd.

http://www.slicot.org

46 Chapter 10: Pole Placement

10 Pole Placement

10.1 place

f = place (sys, p) [Function File]
f = place (a, b, p) [Function File]
[f, info] = place (sys, p, alpha) [Function File]
[f, info] = place (a, b, p, alpha) [Function File]

Pole assignment for a given matrix pair (A,B) such that p = eig (A-B*F). If parameter alpha
is specified, poles with real parts (continuous-time) or moduli (discrete-time) below alpha are
left untouched.

Inputs

sys Continuous- or discrete-time LTT system.

a State matrix (n-by-n) of a continuous-time system.

b Input matrix (n-by-m) of a continuous-time system.

p Desired eigenvalues of the closed-loop system state-matrix A-B*F. length (p)
<= rows (A).

alpha Specifies the maximum admissible value, either for real parts or for moduli, of
the eigenvalues of A which will not be modified by the eigenvalue assignment
algorithm. alpha >= 0 for discrete-time systems.

Outputs

f State feedback gain matrix.

info Structure containing additional information.

info.nfp The number of fixed poles, i.e. eigenvalues of A having real parts less than alpha,

or moduli less than alpha. These eigenvalues are not modified by place.
info.nap ~ The number of assigned eigenvalues. nap = n-nfp-nup.

info.nup The number of uncontrollable eigenvalues detected by the eigenvalue assignment
algorithm.

info.z The orthogonal matrix z reduces the closed-loop system state matrix A + B*F to
upper real Schur form. Note the positive sign in A + B*F.

Note
Place is also suitable to design estimator gains:
L = place (A.’, C.’, p).’
L = place (sys.’, p).’ # useful for discrete-time systems
Algorithm

Uses SLICOT SB01BD by courtesy of NICONET e.V. (http://www.slicot.org)

http://www.slicot.org

Chapter 10: Pole Placement 47

10.2 rlocus

rlocus (sys) [Function File]
[rldata, k] = rlocus (sys, increment, min_k, max_k) [Function File]
Display root locus plot of the specified SISO system.
Inputs
Sys LTI model. Must be a single-input and single-output (SISO) system.
increment The increment used in computing gain values.
min_k Minimum value of k.
max_k Maximum value of k.
Outputs
rldata Data points plotted: in column 1 real values, in column 2 the imaginary values.
k Gains for real axis break points.

Block Diagram

48 Chapter 11: Optimal Control

11 Optimal Control

11.1 augstate

augsys = augstate (sys) [Function File]
Append state vector x of system sys to output vector y.

5.
1

Ax+Bu x=Ax+Bu
y=Cx+Du => y=Cx+Du
x=Ix+0u

11.2 dlge

[m, p, z, e] = dlge (a, g, ¢, g, I) [Function File]

[m, p, z, el = dlge (a, g ¢, q, I, S) [Function File]

[m, p, z, €] = dlge (a [, ¢, q 1) [Function File]
[]

[m, p, z, e] = dlge (&[], ¢, q, r, s) Function File

Kalman filter for discrete-time systems.

x[k] = Ax[k] + Bulk] + Gwl[k] (State equation)
y[k] = Cx[k] + Dulk] + v[k] (Measurement Equation)
E(w) = 0, E(v) =0, cov(w) = Q, cov(v) =R, cov(w,v) =S
Inputs
a State transition matrix of discrete-time system (n-by-n).
g Process noise matrix of discrete-time system (n-by-g). If g is empty [1, an
identity matrix is assumed.
c Measurement matrix of discrete-time system (p-by-n).
q Process noise covariance matrix (g-by-g).
r Measurement noise covariance matrix (p-by-p).
S Optional cross term covariance matrix (g-by-p), s = cov(w,v). If s is empty []
or not specified, a zero matrix is assumed.
Outputs
m Kalman filter gain matrix (n-by-p).
p Unique stabilizing solution of the discrete-time Riccati equation (n-by-n). Sym-
metric matrix.
z Error covariance (n-by-n), cov(x(k|k)-x)
e Closed-loop poles (n-by-1).

Equations

Chapter 11: Optimal Control 49

x[klk] = x[klk-1] + M(y[k] - Cx[kl|k-1] - Dulk]) =

x[k+1|k] = Ax[k|k] + Bul[k] for S=0
x[k+1|k] = Ax[kl|k] + Bulk] + G*S*(CxP*C’ + R)"-1*(y[k] - C*x[k|k-1]) for n
E = eig(A - A*MxC) for S=0

x|
I

eig(A - A*MxC - G*Sx(CxP*C’ + Rv)~-1%C) for non-zero S

See also: dare, care, dlqr, Iqr, lge.

11.3 dlqr

g, x, 1]
g, x, 1] =
g, x, 1] =
g, x, 1] =
g, x, 1] =
g, x, 1] =

= dlqr (sys, g, 1) [Function File]
dlqr (sys, q, r, s) [Function File]
dlqr (a, b, q, 1) [Function File]
dlgr (a, b, q, r, S) [Function File]
dlgr (a, b, q, 1, [, €) [Function File]

[]

dlqr (a, b, q, T, s, €) Function File

Linear-quadratic regulator for discrete-time systems.

Inputs
Sys

i EEte I ©

19))]

Outputs
g

b'e
1

Equations

Continuous or discrete-time LTI model (p-by-m, n states).
State transition matrix of discrete-time system (n-by-n).
Input matrix of discrete-time system (n-by-m).

State weighting matrix (n-by-n).

Input weighting matrix (m-by-m).

Optional cross term matrix (n-by-m). If s is not specified, a zero matrix is
assumed.

Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is
assumed.

State feedback matrix (m-by-n).
Unique stabilizing solution of the discrete-time Riccati equation (n-by-n).

Closed-loop poles (n-by-1).

x[k+1] = A x[k] + B ulk], x[0] = x0 =
inf

J(x0) =SUM (x> Q x + uw” Ru + 2x’ S u
k=0

L = eig (A - BxGQ)

See also: dare, care, Iqr.

50 Chapter 11: Optimal Control

11.4 estim

est = estim (sys, 1) [Function File]
est = estim (sys, 1, sensors, known) [Function File]
Return state estimator for a given estimator gain.
Inputs
Sys LTT model.
1 State feedback matrix.
sensors Indices of measured output signals y from sys. If omitted, all outputs are mea-
sured.
known Indices of known input signals u (deterministic) to sys. All other inputs to sys are
assumed stochastic (w). If argument known is omitted, no inputs u are known.
Outputs
est State-space model of estimator.

Block Diagram

R +
o > | [-—————- >y
| Ho——— - + + y | est | B
u ————+-——>| | -———- >(+)-————- >| |-—————- > X
| sys | S+ o +
W o———————- >| | |
o + | v

See also: kalman, lge, place.

11.5 kalman
[est, g, x] = kalman (sys, q, r) [Function File]
[est, g, x] = kalman (sys, q, 1, s) [Function File]
[est, g, x] = kalman (sys, q, r, [|, sensors, known) [Function File]
[est, g, x] = kalman (sys, q, r, s, sensors, known) [Function File]
Design Kalman estimator for LTT systems.
Inputs
Sys Nominal plant model.
q Covariance of white process noise.
r Covariance of white measurement noise.
S Optional cross term covariance. Default value is 0.
sensors Indices of measured output signals y from sys. If omitted, all outputs are mea-
sured.
known Indices of known input signals u (deterministic) to sys. All other inputs to sys
are assumed stochastic. If argument known is omitted, no inputs u are known.
Outputs
est State-space model of the Kalman estimator.

g Estimator gain.

Chapter 11: Optimal Control 51

X

Solution of the Riccati equation.

Block Diagram

u - + -
o > | [-—————- >y
| tommmm + + y | est | -
u ————t-—=>| | -———- >(+)-—---- >| | -————-—- > X
| sys | T+ o +
W - >| | |
o + | v
Q = cov (w, w’) R = cov (v, v’) S = cov (w, v’)

See also: care, dare, estim, Iqr.

11.6 lge

[1, p, el
[1, p, el
[1, p, el
[1, p, €]
[1, p, €]
(1, p, el

= lge (sys, q, 1) [Function File]
lge (sys, q, T, s) [Function File]
1ge (a, g ¢ g 1) [Function File]
lge (a, 8. ¢ g, T, s) [Function File]

= 1qe (a7 []7 ¢ q, r) [Function Flle]
[]

lge (a, []; c,q, T, s) Function File

Kalman filter for continuous-time systems.

Inputs

Sys

Outputs
1

p

e

Equations

x = Ax + Bu + Gw (State equation)
y =Cx +Du + v (Measurement Equation)
E(w) = 0, E(v) =0, cov(w) =Q, cov(v) =R, cov(w,v) =8

Continuous or discrete-time LTI model (p-by-m, n states).
State matrix of continuous-time system (n-by-n).

Process noise matrix of continuous-time system (n-by-g). If g is empty [], an
identity matrix is assumed.

Measurement matrix of continuous-time system (p-by-n).
Process noise covariance matrix (g-by-g).
Measurement noise covariance matrix (p-by-p).

Optional cross term covariance matrix (g-by-p), s = cov(w,v). If s is empty []
or not specified, a zero matrix is assumed.

Kalman filter gain matrix (n-by-p).

Unique stabilizing solution of the continuous-time Riccati equation (n-by-n).
Symmetric matrix. If sys is a discrete-time model, the solution of the corre-
sponding discrete-time Riccati equation is returned.

Closed-loop poles (n-by-1).

52

Chapter 11: Optimal Control

.
]

Ax + Bu + L(y - Cx -Du)

3]
I

eig(A - L*C)

See also: dare, care, dlqr, 1qr, dlge.

11.7 Iqr

lg,
Lg,
Lg,
Lg,
Lg,
lg,

X,

1]
1]
1]
1]
1]
1]

1qr (sys, q, r)

1lqr (sys, q, r, 8)
1lqr (a, b, q, r

1qr (a7 b7 q7 r7 S)
1gr (a, b, q, ,], e)
1qgr (a, b, q, 1, s, €)

Linear-quadratic regulator.

Inputs

Sys

a
b
q

~

Outputs

g

X

1

Equations

See also:

Continuous or discrete-time LTI model (p-by-m, n states).

State matrix of continuous-time system (n-by-n).
Input matrix of continuous-time system (n-by-m).
State weighting matrix (n-by-n).

Input weighting matrix (m-by-m).

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

Optional cross term matrix (n-by-m). If s is not specified, a zero matrix is

assumed.

Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is

assumed.

State feedback matrix (m-by-n).

Unique stabilizing solution of the continuous-time Riccati equation (n-by-n).

Closed-loop poles (n-by-1).

x=Ax+Bu, x(0) =x0

inf

J(x0) = INT (x>’ Q x + uw” Ru + 2x’8Su

0

L = eig (A - B*G)

care, dare, dlqr.

Chapter 12: Robust Control 53

12 Robust Control

12.1 augw

P = augw (G, W1, W2, W3) [Function File]
Extend plant for stacked S/KS/T problem. Subsequently, the robust control problem can be
solved by h2syn or hinfsyn.

Inputs

G LTT model of plant.

Wi LTT model of performance weight. Bounds the largest singular values of sensitivity
S. Model must be empty [1, SISO or of appropriate size.

W2 LTT model to penalize large control inputs. Bounds the largest singular values of
KS. Model must be empty [1, SISO or of appropriate size.

w3 LTI model of robustness and noise sensitivity weight. Bounds the largest singular

values of complementary sensitivity T. Model must be empty [1, SISO or of
appropriate size.

All inputs must be proper/realizable. Scalars, vectors and matrices are possible instead of
LTI models.

Outputs

P State-space model of augmented plant.

Block Diagram

| Wi | -WixG | zI=Wlr - WlGu
| 0 | w2 | z2 = W2 u
P=10 | W3*G | z3 = W3 G u
|-t |
| T | -G | e = r - G u
+—————- + z1
e > Wl |-
| o +
| o + z2
| Fo—m > W2 |---—-
| | fmmmmmm +
r + e | to— + u | tom—— + vy Fo————— + z3
----- >(#)===+==>| K(s) |-——=+=->| G(s) |-—==4--==>| W3 |---—-
- tomm + to——————— + | to————— +
I I
e e +
o +
| | ———-- > z1 (plx1) zl = Wl e
r (pxl) ----- >l P(s) |-——-- > z2 (p2x1) z2 = W2 u
| | ————- > z3 (p3x1) z3 = W3y
u (mxl1l) ----- > | | ————- > e (px1) e=r -y

54

References

Chapter 12: Robust Control

mm——————— +
r ——---- > | | ————- >z
| P(s) |
u +-——->| | ——--—- + e
[s
| |
| Hommmm - + |
o | K(s) [<-———-+
N S —— +

[1] Skogestad, S. and Postlethwaite 1. (2005) Multivariable Feedback Control: Analysis and
Design: Second Edition. Wiley.

See also: h2syn, hinfsyn, mixsyn.

12.2 fitfrd
[sys, n] = fitfrd (dat, n) [Function File]
[sys, n] = fitfrd (dat, n, flag) [Function File]

Fit frequency response data with a state-space system. If requested, the returned system is
stable and minimum-phase.

Inputs
dat
n

flag

Outputs
Sys

n

Algorithm

LTT model containing frequency response data of a SISO system.

The desired order of the system to be fitted. n <= length(dat.w).

The flag controls whether the returned system is stable and minimum-phase.
0 The system zeros and poles are not constrained. Default value.

1 The system zeros and poles will have negative real parts in the
continuous-time case, or moduli less than 1 in the discrete-time case.

State-space model of order n, fitted to frequency response data dat.

The order of the obtained system. The value of n could only be modified if inputs
n> 0 and flag = 1.

Uses SLICOT SB10YD by courtesy of NICONET e.V. (http://www.slicot.org)

12.3 h2syn

[K, N, gamma, info] = h2syn (P, nmeas, ncon) [Function File]

[K, N, gamma, infol

h2syn (P) [Function File]

H-2 control synthesis for LTI plant.

Inputs
P

nmeas

Generalized plant. Must be a proper/realizable LTI model. If P is constructed
with mktito or augw, arguments nmeas and ncon can be omitted.

Number of measured outputs v. The last nmeas outputs of P are connected to
the inputs of controller K. The remaining outputs z (indices 1 to p-nmeas) are
used to calculate the H-2 norm.

http://www.slicot.org

Chapter 12: Robust Control 55

ncon Number of controlled inputs u. The last ncon inputs of P are connected to the
outputs of controller K. The remaining inputs w (indices 1 to m-ncon) are excited
by a harmonic test signal.

Outputs

K State-space model of the H-2 optimal controller.
N State-space model of the lower LFT of P and K.
info Structure containing additional information.

info.gamma
H-2 norm of N.

info.rcond Vector rcond contains estimates of the reciprocal condition numbers of the ma-
trices which are to be inverted and estimates of the reciprocal condition numbers
of the Riccati equations which have to be solved during the computation of the
controller K. For details, see the description of the corresponding SLICOT rou-
tine.

Block Diagram

gamma = min| |N(K) || N = 1ft (P, K)
K 2
omm +
W - > | | ————- > z
I P(s) |
u +————>| | ————- + v
| o + |
| |
| Hom—m———— + |
to———= I K(s) [|<———-+
tomm - +
pomm +
wo————- > N(s) |--—-- >z
tmmm +

Algorithm
Uses SLICOT SB10HD and SB10ED by courtesy of NICONET e.V. (http://www.slicot.
org)

See also: augw, lqr, dlqr, kalman.

12.4 hinfsyn

[K, N, gamma, info] = hinfsyn (P, nmeas, ncon) [Function File]
[K, N, gamma, info] = hinfsyn (P, nmeas, ncon, ...) [Function File]
[K, N, gamma, info] = hinfsyn (P, nmeas, ncon, opt, ...) [Function File]
[K, N, gamma, info] = hinfsyn (P, ...) [Function File]
[K, N, gamma, info] = hinfsyn (P, opt, ...) [Function File]

H-infinity control synthesis for LTI plant.
Inputs

http://www.slicot.org
http://www.slicot.org

56

nmeas

ncon

opt

Outputs
K
N

info

info.gamma

info.rcond

Chapter 12: Robust Control

Generalized plant. Must be a proper/realizable LTI model. If P is constructed
with mktito or augw, arguments nmeas and ncon can be omitted.

Number of measured outputs v. The last nmeas outputs of P are connected to
the inputs of controller K. The remaining outputs z (indices 1 to p-nmeas) are
used to calculate the H-infinity norm.

Number of controlled inputs u. The last ncon inputs of P are connected to the
outputs of controller K. The remaining inputs w (indices 1 to m-ncon) are excited
by a harmonic test signal.

Optional pairs of keys and values. ’keyl’, valuel, ’key2’, value2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

State-space model of the H-infinity (sub-)optimal controller.
State-space model of the lower LFT of P and K.

Structure containing additional information.

L-infinity norm of N.

Vector rcond contains estimates of the reciprocal condition numbers of the ma-
trices which are to be inverted and estimates of the reciprocal condition numbers
of the Riccati equations which have to be solved during the computation of the
controller K. For details, see the description of the corresponding SLICOT rou-
tine.

Option Keys and Values

‘method’

‘gmax’

"gmin’

"tolgam’

‘actol’

String specifying the desired kind of controller:

‘optimal’, ’opt’, o’
Compute optimal controller using gamma iteration. Default selection
for compatibility reasons.

suboptimal’, ’sub’, ’s’
Compute (sub-)optimal controller. For stability reasons, suboptimal
controllers are to be preferred over optimal ones.

The maximum value of the H-infinity norm of N. It is assumed that gmax is
sufficiently large so that the controller is admissible. Default value is 1el5.

Initial lower bound for gamma iteration. Default value is 0. gmin is only mean-
ingful for optimal discrete-time controllers.

Tolerance used for controlling the accuracy of gamma and its distance to the
estimated minimal possible value of gamma. Default value is 0.01. If tolgam
= 0, then a default value equal to sqrt(eps) is used, where eps is the relative
machine precision. For suboptimal controllers, tolgam is ignored.

Upper bound for the poles of the closed-loop system N used for determining if
it is stable. actol >= 0 for stable systems. For suboptimal controllers, actol is
ignored.

Block Diagram

Chapter 12: Robust Control 57

gamma = min]| [N(K) || N = 1ft (P, K)
K inf
e +
W o———-= > | | ————- >z
| P(s) |
u +————>| [————- + v
| Homm— - + |
| |
| oo + |
o | K(s) [<-——-+
tmm—m - +
S +
W o————= > N(s) [|--—-- > z
Hmm—m - +

Algorithm
Uses SLICOT SB10FD, SB10DD and SB10AD by courtesy of NICONET e.V. (http://www.

slicot.org)

See also: augw, mixsyn.

12.5 mixsyn

[K, N, gamma, info] = mixsyn (G, W1, W2, W3, ...) [Function File]
Solve stacked S/KS/T H-infinity problem. Mixed-sensitivity is the name given to transfer
function shaping problems in which the sensitivity function S = (I + GK)™! is shaped along
with one or more other closed-loop transfer functions such as K S or the complementary sensi-
tivity function T'=1—S = (I + GK) 'GK in a typical one degree-of-freedom configuration,
where G denotes the plant and K the (sub-)optimal controller to be found. The shaping
of multivariable transfer functions is based on the idea that a satisfactory definition of gain
(range of gain) for a matrix transfer function is given by the singular values o of the transfer
function. Hence the classical loop-shaping ideas of feedback design can be generalized to
multivariable systems. In addition to the requirement that K stabilizes G, the closed-loop
objectives are as follows [1]:

1. For disturbance rejection make 7 (S) small.

2. For noise attenuation make & (T') small.

3. For reference tracking make o(T) ~ o(T) ~ 1.

4. For input usage (control energy) reduction make (K S) small.

5. For robust stability in the presence of an additive perturbation G, = G+ A, make 7(KS)
small.

6. For robust stability in the presence of a multiplicative output perturbation G, = (I+A)G,
make 7(7") small.

In order to find a robust controller for the so-called stacked S/KS/T H., problem, the user
function mixsyn minimizes the following criterion

Kmin||[N(K)||, N =|W\S; WoKS; W,T|

[X, N] = mixsyn (G, W1, W2, W3). The user-defined weighting functions W1, W2 and W3
bound the largest singular values of the closed-loop transfer functions S (for performance),

http://www.slicot.org
http://www.slicot.org

Chapter 12: Robust Control

K S (to penalize large inputs) and T (for robustness and to avoid sensitivity to noise),
respectively [1]. A few points are to be considered when choosing the weights. The weigths
Wi must all be proper and stable. Therefore if one wishes, for example, to minimize S at low
frequencies by a weighting W1 including integral action, % needs to be approximated by Sie,
where € < 1. Similarly one might be interested in weighting K S with a non-proper weight
W2 to ensure that K is small outside the system bandwidth. The trick here is to replace a

non-proper term such as 1+ 7;s by %, where 7, < 7 [1, 2].

Inputs

G LTT model of plant.

Wi LTT model of performance weight. Bounds the largest singular values of sensitivity
S. Model must be empty [1, SISO or of appropriate size.

w2 LTT model to penalize large control inputs. Bounds the largest singular values of
KS. Model must be empty [1, SISO or of appropriate size.

w3 LTI model of robustness and noise sensitivity weight. Bounds the largest singular

values of complementary sensitivity T. Model must be empty [1, SISO or of
appropriate size.

Optional arguments of hinfsyn. Type help hinfsyn for more information.

All inputs must be proper/realizable. Scalars, vectors and matrices are possible instead of
LTT models.

Outputs

K State-space model of the H-infinity (sub-)optimal controller.
N State-space model of the lower LFT of P and K.

info Structure containing additional information.

info.gamma
L-infinity norm of N.

info.rcond Vector rcond contains estimates of the reciprocal condition numbers of the ma-
trices which are to be inverted and estimates of the reciprocal condition numbers
of the Riccati equations which have to be solved during the computation of the
controller K. For details, see the description of the corresponding SLICOT rou-
tine.

Block Diagram

| w1 s |
gamma = min| [N(K) || N=]W2KS | =1ft (P, K)
K inf | W3 T |

Chapter 12: Robust Control

Algorithm

59
+-————- + z1
o > WL |-
| +o———— +
| o + z2
I Attt >l w2 |---—-
| | to————— +
T + e | o + u | +——————— F————— + z3
————— >(+)——=+-->| K(s) |--——+-->| G(s8) |-———+-——->| W3 |---—-
- - tom + pomm— o= +
|
o
Fomm— - +
| | ————- > z1 (plx1) zl =Wl e
r (px1) ----- > P(s) |--——- > z2 (p2x1) z2 = W2 u
| | ————- > z3 (p3x1) z3 = W3y
u (mx1) ----- >| | -——-- > e (px1) e=r -y
Fommm - +
fomm— +
r —-——- >| | ————- >z
| P(s) |
u +---=>| | -———- + e
| tommm + |
| |
| tommm - + |
+-———= | K(s) |<———-+
pmmmm +
Fommm - +
r ———-- > N(s) |--—-- >z
o +
Extended Plant: P = augw (G, W1, W2, W3)
Controller: K = mixsyn (G, Wi, W2, W3)
Entire System: N = 1ft (P, K)
Open Loop: L=G=x*xK
Closed Loop: T = feedback (L)

Relies on functions augw and hinfsyn, which use SLICOT SB10FD, SB10DD and SB10AD
by courtesy of NICONET e.V. (http://www.slicot.org)

References

[1] Skogestad, S. and Postlethwaite I. (2005) Multivariable Feedback Control: Analysis and
Design: Second Edition. Wiley, Chichester, England.
[2] Meinsma, G. (1995) Unstable and nonproper weights in H-infinity control Automatica,
Vol. 31, No. 11, pp. 1655-1658

See also: hinfsyn, augw.

http://www.slicot.org

60 Chapter 12: Robust Control

12.6 mktito

P = mktito (P, nmeas, ncon) [Function File]
Partition LTI plant P for robust controller synthesis. If a plant is partitioned this way, one
can omit the inputs nmeas and ncon when calling the functions hinfsyn and h2syn.

Inputs

P Generalized plant.

nmeas Number of measured outputs v. The last nmeas outputs of P are connected to
the inputs of controller K. The remaining outputs z (indices 1 to p-nmeas) are
used to calculate the H-2/H-infinity norm.

ncon Number of controlled inputs u. The last ncon inputs of P are connected to the
outputs of controller K. The remaining inputs w (indices 1 to m-ncon) are excited
by a harmonic test signal.

Outputs

P Partitioned plant. The input/output groups and names are overwritten with

designations according to [1].

Block Diagram

min| [NCK) | | N = 1ft (P, K)
K norm
Fomm - +
W o—---- > | | ————- >z
| P(s) |
u +---=>| | -—--- + v
| to—mm———— + |
| |
| tommm - + |
o | K(s) [|<———-+
Fmmm +
e +
W o————= >l N(s) [|--—-—-- > z
Fomm +

Reference

[1] Skogestad, S. and Postlethwaite, I. (2005) Multivariable Feedback Control: Analysis and
Design: Second Edition. Wiley, Chichester, England.

12.7 ncfsyn

[K, N, gamma, info] = ncfsyn (G, W1, W2, factor) [Function File]
Loop shaping H-infinity synthesis. Compute positive feedback controller using the McFar-
lane/Glover loop shaping design procedure [1]. Using a precompensator W1 and/or a post-
compensator W2, the singular values of the nominal plant G are shaped to give a desired
open-loop shape. The nominal plant G and shaping functions W1, W2 are combined to form
the shaped plant, Gs where Gs = W2 G W1. We assume that W1 and W2 are such that Gs
contains no hidden modes. It is relatively easy to approximate the closed-loop requirements
by the following open-loop objectives [2]:

Chapter 12: Robust Control 61

1. For disturbance rejection make a(WoGW7) large; valid for frequencies at which o(Gg) >
1.

2. For noise attenuation make o(WoGW7) small; valid for frequencies at which 7(Gs) < 1.
3. For reference tracking make o(WoGW,) large; valid for frequencies at which o(Gg) > 1.

4. For robust stability to a multiplicative output perturbation G, = (I + A)G, make
o (W,GW;) small; valid for frequencies at which 7(Gg) < 1.

Then a stabilizing controller Ks is synthesized for shaped plant Gs. The final positive feed-
back controller K is then constructed by combining the H,, controller Ks with the shaping
functions W1 and W2 such that K = W1 Ks W2. In [1] is stated further that the given robust
stabilization objective can be interpreted as a H,, problem formulation of minimizing the
H,, norm of the frequency weighted gain from disturbances on the plant input and output
to the controller input and output as follows:

Kmin||N (K)o,
N = WL WG| (I — KG)™ (W, GW,|

[X, N] = ncfsyn (G, W1, W2, £) The function ncfsyn - the somewhat cryptic name stands
for normalized coprime factorization synthesis - allows the specification of an additional
argument, factor f. Default value £ = 1 implies that an optimal controller is required, whereas
f > 1 implies that a suboptimal controller is required, achieving a performance that is f times
less than optimal.

Inputs

G LTT model of plant.

Wi LTT model of precompensator. Model must be SISO or of appropriate size. An
identity matrix is taken if W1 is not specified or if an empty model [] is passed.

w2 LTT model of postcompensator. Model must be SISO or of appropriate size. An
identity matrix is taken if W2 is not specified or if an empty model [] is passed.

factor factor = 1 implies that an optimal controller is required. factor > 1 implies
that a suboptimal controller is required, achieving a performance that is factor
times less than optimal. Default value is 1.

Outputs

K State-space model of the H-infinity loop-shaping controller. Note that K is a
positive feedback controller.

N State-space model of the closed loop depicted below.

info Structure containing additional information.

info.gamma
L-infinity norm of N. gamma = norm (N, inf).

info.emax Nugap robustness. emax = inv (gamma).
info.Gs Shaped plant. Gs = W2 * G * W1.
info.Ks Controller for shaped plant. Ks = ncfsyn (Gs).

info.rcond Estimates of the reciprocal condition numbers of the Riccati equations and a
few other things. For details, see the description of the corresponding SLICOT
routine.

Block Diagram of N

62

Chapter 12: Robust Control
Tzl T z2
| |
wl + | o + | o +
————— >(+)———+-=>| Ks | ——==+=—==>(+) ————>| Gs [-———+
S+ tom— + - +—————— + |
| w2 | |
| |
e +
Algorithm

Uses SLICOT SB10ID, SB10KD and SB10ZD by courtesy of NICONET e.V. (http://wuw.
slicot.org)

References

[1] D. McFarlane and K. Glover, A Loop Shaping Design Procedure Using H-infinity Synthesis,
IEEE Transactions on Automatic Control, Vol. 37, No. 6, June 1992.

[2] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design:
Second Edition. Wiley, Chichester, England, 2005.

http://www.slicot.org
http://www.slicot.org

Chapter 13: Matrix Equation Solvers

13 Matrix Equation Solvers

= Ccare

care
care
care

(a,
(a,
(a7
(a7

b, q, 1)

b, q, r, 5)

b7 q; r, []7 e)
b, q T, s, e)

Solve continuous-time algebraic Riccati equation (ARE).

13.1 care
[x, 1, gl =
[x, 1, gl =
[x, 1, gl =
[x, 1, gl =

Inputs

a

b

q

r

S

e

Outputs

b

1

g

Equations

Real matrix (n-by-n).

Real matrix (n-by-m).

Real matrix (n-by-n).

Real matrix (m-by-m).

63

[Function File]
[Function File]
[Function File]
[Function File]

Optional real matrix (n-by-m). If s is not specified, a zero matrix is assumed.

Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is
assumed.

Unique stabilizing solution of the continuous-time Riccati equation (n-by-n).

Closed-loop poles (n-by-1).

Corresponding gain matrix (m-by-n).

-1

A’X + XA -XBR B’X+Q=0

A’X + XA - (XB + S) R

R (B’X + 8°)

eig (A - B*G)

-1

(B’X+8’) +Q=0

64

Algorithm
Uses SLICOT SB020D and SG02AD by courtesy of NICONET e.V. (http://www.slicot.

org)

Chapter 13: Matrix Equation Solvers

-1
A’XE + E’XA - E’XBR BXE+ Q=0

-1
A’XE + E’XA - (E’XB + S) R (B’XE + S’) +Q =0

-1
G =R B’XE
-1
G=R (B’XE + 8)
L = eig (A - BxG, E)

See also: dare, Iqr, dlqr, kalman.

= dare (a, b, q, 1) [Function File]
dare (a, b, q, I, S) [Function File]
dare (a, b, q, 1, [, €) [Function File]

[}

dare (a, b, q, 1, s, €) Function File

Solve discrete-time algebraic Riccati equation (ARE).

13.2 dare
[x, 1, g]
[x, 1, gl =
[x, 1, gl =
[x, 1, gl =

Inputs

a

b

q

r

s

e

Outputs

X

|

g

Equations

Real matrix (n-by-n).

Real matrix (n-by-m).

Real matrix (n-by-n).

Real matrix (m-by-m).

Optional real matrix (n-by-m). If s is not specified, a zero matrix is assumed.

Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is
assumed.

Unique stabilizing solution of the discrete-time Riccati equation (n-by-n).
Closed-loop poles (n-by-1).

Corresponding gain matrix (m-by-n).

http://www.slicot.org
http://www.slicot.org

Chapter 13: Matrix Equation Solvers 65

-1
A’XA - X - A’XB (B’XB + R) B’XA+Q =0

-1
A°XA - X - (A’XB + 8) (B’XB + R) (B’XA +8°) +Q =0

-1

G = (B’XB + R) B’XA

-1
G = (B’XB + R) (B’XA + 8?%)
L = eig (A - BxG)

-1
A°XA - E’XE - A’XB (B’XB + R) B’XA+ Q=0

-1
A°XA - E’XE - (A’XB + 3) (B’XB + R) (B’XA + 8°) +Q =0

-1

G = (B’XB + R) B’XA

-1
G= (B’XB +R) (B’XA + S?)
L = eig (A - B*G, E)

Algorithm
Uses SLICOT SB020D and SG02AD by courtesy of NICONET e.V. (http://www.slicot.
org)

See also: care, Iqr, dlgr, kalman.

13.3 dlyap

x = dlyap (a, b) [Function File]
x = dlyap (a, b, c) [Function File]
x = dlyap (a, b, [],) [Function File]

Solve discrete-time Lyapunov or Sylvester equations.

Equations

AXA’ - X +B =0 (Lyapunov Equation)

AXB> - X +C=0 (Sylvester Equation)

AXA’ - EXE> + B = 0 (Generalized Lyapunov Equation)
Algorithm

Uses SLICOT SB03MD, SB04QD and SGO3AD by courtesy of NICONET e.V. (http://

www.slicot.org)

See also: dlyapchol, lyap, lyapchol.

http://www.slicot.org
http://www.slicot.org
http://www.slicot.org
http://www.slicot.org

66 Chapter 13: Matrix Equation Solvers

13.4 dlyapchol

u = dlyapchol (a, b) [Function File]
u = dlyapchol (a, b, €) [Function File]
Compute Cholesky factor of discrete-time Lyapunov equations.
Equations
AUouaA - UPU + BB = 0 (Lyapunov Equation) =
AU>UA - EUVUE + BB = 0 (Generalized Lyapunov Equation.
Algorithm

Uses SLICOT SB030D and SG03BD by courtesy of NICONET e.V. (http://www.slicot.
org)

See also: dlyap, lyap, lyapchol.

13.5 lyap

x = lyap (a, b) [Function File]
x = lyap (a, b, c) [Function File]
x = lyap (a, b, [], €) [Function File]

Solve continuous-time Lyapunov or Sylvester equations.

Equations
AX + XA + B =0 (Lyapunov Equation) =
AX + XB+C =0 (Sylvester Equation)
AXE’ + EXA> + B = 0 (Generalized Lyapunov Equation)

Algorithm

Uses SLICOT SB03MD, SB04MD and SGO3AD by courtesy of NICONET e.V. (http://

www.slicot.org)

See also: lyapchol, dlyap, dlyapchol.

13.6 lyapchol

u = lyapchol (a, b) [Function File]
u = lyapchol (a, b, €) [Function File]
Compute Cholesky factor of continuous-time Lyapunov equations.
Equations
AUV U + U”UAN + BB = 0 (Lyapunov Equation) =
AU UE + EUPUA + BB = 0 (Generalized Lyapunov Equation.
Algorithm

Uses SLICOT SB030D and SG03BD by courtesy of NICONET e.V. (http://www.slicot.
org)

See also: lyap, dlyap, dlyapchol.

http://www.slicot.org
http://www.slicot.org
http://www.slicot.org
http://www.slicot.org
http://www.slicot.org
http://www.slicot.org

Chapter 14: Model Reduction 67

14 Model Reduction

14.1 bstmodred

[Gr, info]
[Gr, info]
[Gr, infol
[Gr, info]

= bstmodred (G, ...) [Function File]
= bstmodred (G, nr, ...) [Function File]
= bstmodred (G, opt, ...) [Function File]
= bstmodred (G, nr, opt, o) [Function File]

Model order reduction by Balanced Stochastic Truncation (BST) method. The aim of model
reduction is to find an LTI system Gr of order nr (nr < n) such that the input-output behaviour
of Gr approximates the one from original system G.

BST is a relative error method which tries to minimize

Inputs

nr

opt

Outputs
Gr

info

|GG — G,)||so = min

LTI model to be reduced.

The desired order of the resulting reduced order system Gr. If not specified, nr
is chosen automatically according to the description of key ’order’.

Optional pairs of keys and values. "keyl", valuel, "key2", value2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Reduced order state-space model.

Struct containing additional information.

info.n The order of the original system G.

info.ns The order of the alpha-stable subsystem of the original system G.

info.hsv The Hankel singular values of the phase system corresponding to the
alpha-stable part of the original system G. The ns Hankel singular
values are ordered decreasingly.

info.nu The order of the alpha-unstable subsystem of both the original sys-
tem G and the reduced-order system Gr.

info.nr The order of the obtained reduced order system Gr.

Option Keys and Values

‘order’, 'nr’

‘method’

The desired order of the resulting reduced order system Gr. If not specified,
nr is the sum of NU and the number of Hankel singular values greater than
MAX (TOL1,NS*EPS); nr can be further reduced to ensure that HSV(NR-NU) >
HSV(NR+1-NU).

Approximation method for the H-infinity norm. Valid values corresponding to
this key are:

'sr-bta’, ’b’
Use the square-root Balance & Truncate method.

68

)

"alpha

’beta’

'toll’

’tol2’

Chapter 14: Model Reduction

'bfsr-bta’, ’f’
Use the balancing-free square-root Balance & Truncate method. De-
fault method.

'sr-spa’, ’s’

Use the square-root Singular Perturbation Approximation method.

"bfsr-spa’, 'p’
Use the balancing-free square-root Singular Perturbation Approxi-
mation method.

Specifies the ALPHA-stability boundary for the eigenvalues of the state dynamics
matrix G.A. For a continuous-time system, ALPHA <= 0 is the boundary value
for the real parts of eigenvalues, while for a discrete-time system, 0 <= ALPHA
<= 1 represents the boundary value for the moduli of eigenvalues. The ALPHA-
stability domain does not include the boundary. Default value is 0 for continuous-
time systems and 1 for discrete-time systems.

Use [G, betax*I] as new system G to combine absolute and relative error meth-
ods. BETA > 0 specifies the absolute/relative error weighting parameter. A large
positive value of BETA favours the minimization of the absolute approximation
error, while a small value of BETA is appropriate for the minimization of the
relative error. BETA = 0 means a pure relative error method and can be used
only if rank(G.D) = rows(G.D) which means that the feedthrough matrice must
not be rank-deficient. Default value is 0.

If ’order’ is not specified, toll contains the tolerance for determining the order of
reduced system. For model reduction, the recommended value of toll lies in the
interval [0.00001, 0.001]. toll < 1. If toll <= 0 on entry, the used default value is
toll = NS*EPS, where NS is the number of ALPHA-stable eigenvalues of A and
EPS is the machine precision. If ’order’ is specified, the value of toll is ignored.

The tolerance for determining the order of a minimal realization of the phase
system (see METHOD) corresponding to the ALPHA-stable part of the given
system. The recommended value is TOL2 = NS*EPS. TOL2 <= TOL1 < 1.
This value is used by default if ’tol2’ is not specified or if TOL2 <= 0 on entry.

‘equil’, ’scale’

Boolean indicating whether equilibration (scaling) should be performed on system
G prior to order reduction. Default value is true if G.scaled == false and false
if G.scaled == true. Note that for MIMO models, proper scaling of both inputs
and outputs is of utmost importance. The input and output scaling can not be
done by the equilibration option or the prescale function because these functions
perform state transformations only. Furthermore, signals should not be scaled
simply to a certain range. For all inputs (or outputs), a certain change should
be of the same importance for the model.

BST is often suitable to perform model reduction in order to obtain low order design models
for controller synthesis.

Approximation Properties:

e Guaranteed stability of reduced models

e Approximates simultaneously gain and phase

e Preserves non-minimum phase zeros

Guaranteed a priori error bound

n

IGHG =Gl <2)

J=r+1

1+Uj

1—0']‘

-1

Chapter 14: Model Reduction 69

Algorithm
Uses SLICOT AB09HD by courtesy of NICONET e.V. (http://www.slicot.org)

14.2 btamodred

[Gr, info] = btamodred (G, ...) [Function File]
[Gr, info] = btamodred (G, nr, ...) [Function File]
[Gr, info] = btamodred (G, opt, ...) [Function File]
[Gr, info] = btamodred (G, nr, opt, ...) [Function File]

Model order reduction by frequency weighted Balanced Truncation Approximation (BTA)
method. The aim of model reduction is to find an LTI system Gr of order nr (nr < n) such
that the input-output behaviour of Gr approximates the one from original system G.

BTA is an absolute error method which tries to minimize
|G — G,|| = min

|V (G —G,) W||ew = min

where V and W denote output and input weightings.

Inputs

G LTI model to be reduced.

nr The desired order of the resulting reduced order system Gr. If not specified, nr
is chosen automatically according to the description of key ’order’.
Optional pairs of keys and values. "keyl", valuel, "key2", value2.

opt Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Outputs

Gr Reduced order state-space model.

info Struct containing additional information.

info.n The order of the original system G.
info.ns The order of the alpha-stable subsystem of the original system G.

info.hsv The Hankel singular values of the alpha-stable part of the original
system G, ordered decreasingly.

info.nu The order of the alpha-unstable subsystem of both the original sys-
tem G and the reduced-order system Gr.

info.nr The order of the obtained reduced order system Gr.
Option Keys and Values

‘order’, 'nr’
The desired order of the resulting reduced order system Gr. If not specified, nr
is chosen automatically such that states with Hankel singular values info.hsv >
toll are retained.

"left’, ’output’
LTI model of the left/output frequency weighting V. Default value is an identity
matrix.

http://www.slicot.org

70

Chapter 14: Model Reduction

'right’, ’input’

‘method’

’alpha’

‘toll’

'tol2’

‘gram-ctrb’

'gram-obsv’

‘alpha-ctrb’

LTI model of the right/input frequency weighting W. Default value is an identity
matrix.

Approximation method for the L-infinity norm to be used as follows:
'sr’, b’ Use the square-root Balance & Truncate method.

'bfsr’, ’f” Use the balancing-free square-root Balance & Truncate method. De-
fault method.

Specifies the ALPHA-stability boundary for the eigenvalues of the state dynamics
matrix G.A. For a continuous-time system, ALPHA <= 0 is the boundary value
for the real parts of eigenvalues, while for a discrete-time system, 0 <= ALPHA
<= 1 represents the boundary value for the moduli of eigenvalues. The ALPHA-
stability domain does not include the boundary. Default value is 0 for continuous-
time systems and 1 for discrete-time systems.

If ’order’ is not specified, toll contains the tolerance for determining the order
of the reduced model. For model reduction, the recommended value of toll
is c¢*info.hsv(1), where c lies in the interval [0.00001, 0.001]. Default value is
info.ns*eps*info.hsv(1). If 'order’ is specified, the value of toll is ignored.

The tolerance for determining the order of a minimal realization of the
ALPHA-stable part of the given model. TOL2 <= TOL1. If not specified,
ns*eps*info.hsv(1) is chosen.

Specifies the choice of frequency-weighted controllability Grammian as follows:

'standard’ Choice corresponding to a combination method [4] of the approaches
of Enns [1] and Lin-Chiu [2,3]. Default method.

‘enhanced’
Choice corresponding to the stability enhanced modified combination
method of [4].

Specifies the choice of frequency-weighted observability Grammian as follows:

'standard’ Choice corresponding to a combination method [4] of the approaches
of Enns [1] and Lin-Chiu [2,3]. Default method.

‘enhanced’
Choice corresponding to the stability enhanced modified combination
method of [4].

Combination method parameter for defining the frequency-weighted controlla-
bility Grammian. abs(alphac) <= 1. If alphac = 0, the choice of Grammian
corresponds to the method of Enns [1], while if alphac = 1, the choice of Gram-
mian corresponds to the method of Lin and Chiu [2,3]. Default value is 0.

‘alpha-obsv’

Combination method parameter for defining the frequency-weighted observabil-
ity Grammian. abs(alphao) <= 1. If alphao = 0, the choice of Grammian corre-
sponds to the method of Enns [1], while if alphao = 1, the choice of Grammian
corresponds to the method of Lin and Chiu [2,3]. Default value is 0.

Chapter 14: Model Reduction 71

)

scale’

Boolean indicating whether equilibration (scaling) should be performed on system
G prior to order reduction. This is done by state transformations. Default value
is true if G.scaled == false and false if G.scaled == true. Note that for MIMO
models, proper scaling of both inputs and outputs is of utmost importance. The
input and output scaling can not be done by the equilibration option or the
prescale function because these functions perform state transformations only.
Furthermore, signals should not be scaled simply to a certain range. For all
inputs (or outputs), a certain change should be of the same importance for the
model.

‘equil’,

Approximation Properties:
e Guaranteed stability of reduced models
e Lower guaranteed error bound

e Guaranteed a priori error bound

o1 (G = G| <2 Z Oj

J=r+1

References

[1] Enns, D. Model reduction with balanced realizations: An error bound and a frequency
weighted generalization. Proc. 23-th CDC, Las Vegas, pp. 127-132, 1984.

[2] Lin, C.-A. and Chiu, T.-Y. Model reduction via frequency-weighted balanced realization.
Control Theory and Advanced Technology, vol. 8, pp. 341-351, 1992.

[3] Sreeram, V., Anderson, B.D.O and Madievski, A.G. New results on frequency weighted
balanced reduction technique. Proc. ACC, Seattle, Washington, pp. 4004-4009, 1995.

[4] Varga, A. and Anderson, B.D.O. Square-root balancing-free methods for the frequency-
weighted balancing related model reduction. (report in preparation)

Algorithm
Uses SLICOT ABO09ID by courtesy of NICONET e.V. (http://www.slicot.org)

14.3 hnamodred

[Gr, info] = hnamodred (G, ...) [Function File]
[Gr, info] = hnamodred (G, nr, ...) [Function File]
[Gr, info] = hnamodred (G, opt, ...) [Function File]
[Gr, info] = hnamodred (G, nr, opt, . [Function File]

Model order reduction by frequency weighted optimal Hankel-norm (HNA) method. The aim
of model reduction is to find an LTI system Gr of order nr (nr < n) such that the input-output
behaviour of Gr approximates the one from original system G.

HNA is an absolute error method which tries to minimize
||G — G,||g = min

|V (G — G,) W||g = min
where V and W denote output and input weightings.

Inputs
G LTI model to be reduced.
nr The desired order of the resulting reduced order system Gr. If not specified, nr

is chosen automatically according to the description of key "order".

http://www.slicot.org

72

opt

Outputs
Gr

info

Chapter 14: Model Reduction

Optional pairs of keys and values. "keyl", valuel, "key2", value2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Reduced order state-space model.

Struct containing additional information.

info.n The order of the original system G.

info.ns The order of the alpha-stable subsystem of the original system G.

info.hsv The Hankel singular values corresponding to the projection
op(V)*Gl*xop(W), where G1 denotes the alpha-stable part of the
original system (. The ns Hankel singular values are ordered
decreasingly.

info.nu The order of the alpha-unstable subsystem of both the original sys-
tem G and the reduced-order system Gr.

info.nr The order of the obtained reduced order system Gr.

Option Keys and Values

‘order’, 'nr’

‘method’

Teft’, v’

right’, 'w’

The desired order of the resulting reduced order system Gr. If not specified,
nr is the sum of info.nu and the number of Hankel singular values greater than
max(toll, ns*eps*info.hsv(1);

Specifies the computational approach to be used. Valid values corresponding to
this key are:

’descriptor’
Use the inverse free descriptor system approach.

'standard’ Use the inversion based standard approach.

‘auto’ Switch automatically to the inverse free descriptor approach in case of
badly conditioned feedthrough matrices in V or W. Default method.

LTI model of the left /output frequency weighting. The weighting must be anti-
stable. ||V (G —G,)...||g = min

LTI model of the right/input frequency weighting. The weighting must be anti-
stable. ||...(G — G,) W||g = min

left-inv’, ’inv-v’

LTI model of the left /output frequency weighting. The weighting must have only
antistable zeros. ||inv(V) (G — G,)...||g = min

right-inv’, ’inv-w’

LTI model of the right/input frequency weighting. The weighting must have only
antistable zeros. ||... (G — G,) inv(W)||g = min

"left-conj’, ’conj-v’

'right-conj’,

LTI model of the left /output frequency weighting. The weighting must be stable.
[lconj(V) (G — G,)...||g = min
‘conj-w’

LTI model of the right/input frequency weighting. The weighting must be stable.
l|... (G —G,) conj(W)||g = min

Chapter 14: Model Reduction 73

"left-conj-inv’, ’conj-inv-v’

LTI model of the left/output frequency weighting. The weighting must be
minimum-phase. ||conj(inv(V)) (G —G,)...||y = min

'right-conj-inv’, ’conj-inv-w’

a.

Ipha’

'toll’

’tol2’

LTI model of the right/input frequency weighting. The weighting must be
minimum-phase. ||...(G — G,) conj(inv(W))||g = min

Specifies the ALPHA-stability boundary for the eigenvalues of the state dynamics
matrix G.A. For a continuous-time system, ALPHA <= 0 is the boundary value
for the real parts of eigenvalues, while for a discrete-time system, 0 <= ALPHA
<=1 represents the boundary value for the moduli of eigenvalues. The ALPHA-
stability domain does not include the boundary. Default value is 0 for continuous-
time systems and 1 for discrete-time systems.

If ’order’ is not specified, toll contains the tolerance for determining the order
of the reduced model. For model reduction, the recommended value of toll is
c*info.hsv(1), where c lies in the interval [0.00001, 0.001]. toll < 1. If ‘order’ is
specified, the value of toll is ignored.

The tolerance for determining the order of a minimal realization of the
ALPHA-stable part of the given model. tol2 <= toll < 1. If not specified,
ns*eps*info.hsv(1) is chosen.

’equil’, ’scale’

Boolean indicating whether equilibration (scaling) should be performed on system
G prior to order reduction. Default value is true if G.scaled == false and false
if G.scaled == true. Note that for MIMO models, proper scaling of both inputs
and outputs is of utmost importance. The input and output scaling can not be
done by the equilibration option or the prescale function because these functions
perform state transformations only. Furthermore, signals should not be scaled
simply to a certain range. For all inputs (or outputs), a certain change should
be of the same importance for the model.

Approximation Properties:

Algorithm

e Guaranteed stability of reduced models

e Lower guaranteed error bound

e Guaranteed a priori error bound

o1 (G = G| <2 Z Oj

Jj=r+1

Uses SLICOT AB09JD by courtesy of NICONET e.V. (http://www.slicot.org)

14.4 spamodred

[Gr,
[Gr,
[Gr,
[Gr,

info]
info]
info]
info]

= spamodred (G, ...) [Function File]
= spamodred (G, nr, ...) [Function File]
= spamodred (G, opt, ...) [Function File]
= spamodred (G, nr, opt, ...) [Function File]

Model order reduction by frequency weighted Singular Perturbation Approximation (SPA).
The aim of model reduction is to find an LTI system Gr of order nr (nr < n) such that the
input-output behaviour of Gr approximates the one from original system G.

http://www.slicot.org

74

Chapter 14: Model Reduction

SPA is an absolute error method which tries to minimize

|G — G| = min
|V (G —G,) W||lewe = min

where V and W denote output and input weightings.

Inputs
G

nr

opt

Outputs
Gr

info

LTI model to be reduced.

The desired order of the resulting reduced order system Gr. If not specified, nr
is chosen automatically according to the description of key ’order’.

Optional pairs of keys and values. "keyl", valuel, "key2", value2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Reduced order state-space model.

Struct containing additional information.

info.n The order of the original system G.

info.ns The order of the alpha-stable subsystem of the original system G.

info.hsv The Hankel singular values of the alpha-stable part of the original
system G, ordered decreasingly.

info.nu The order of the alpha-unstable subsystem of both the original sys-
tem G and the reduced-order system Gr.

info.nr The order of the obtained reduced order system Gr.

Option Keys and Values

‘order’, 'nr’

The desired order of the resulting reduced order system Gr. If not specified, nr
is chosen automatically such that states with Hankel singular values info.hsv >
toll are retained.

‘left’, output’

LTI model of the left /output frequency weighting V. Default value is an identity
matrix.

'right’, ’input’

‘method’

"alpha’

LTI model of the right/input frequency weighting W. Default value is an identity
matrix.

Approximation method for the L-infinity norm to be used as follows:

'sr’y s’ Use the square-root Singular Perturbation Approximation method.

'bfsr’, 'p’ Use the balancing-free square-root Singular Perturbation Approxi-
mation method. Default method.

Specifies the ALPHA-stability boundary for the eigenvalues of the state dynamics
matrix G.A. For a continuous-time system, ALPHA <= 0 is the boundary value
for the real parts of eigenvalues, while for a discrete-time system, 0 <= ALPHA
<= 1 represents the boundary value for the moduli of eigenvalues. The ALPHA-
stability domain does not include the boundary. Default value is 0 for continuous-
time systems and 1 for discrete-time systems.

Chapter 14: Model Reduction 75

'toll’ If ’order’ is not specified, toll contains the tolerance for determining the order
of the reduced model. For model reduction, the recommended value of toll
is c*info.hsv(1), where c lies in the interval [0.00001, 0.001]. Default value is
info.ns*eps*info.hsv(1). If ’order’ is specified, the value of toll is ignored.

'tol2’ The tolerance for determining the order of a minimal realization of the
ALPHA-stable part of the given model. TOL2 <= TOL1. If not specified,
ns*eps*info.hsv(1) is chosen.

‘gram-ctrb’
Specifies the choice of frequency-weighted controllability Grammian as follows:

'standard’ Choice corresponding to a combination method [4] of the approaches
of Enns [1] and Lin-Chiu [2,3]. Default method.

‘enhanced’
Choice corresponding to the stability enhanced modified combination
method of [4].

‘gram-obsv’
Specifies the choice of frequency-weighted observability Grammian as follows:

'standard’ Choice corresponding to a combination method [4] of the approaches
of Enns [1] and Lin-Chiu [2,3]. Default method.

‘enhanced’
Choice corresponding to the stability enhanced modified combination
method of [4].

‘alpha-ctrb’
Combination method parameter for defining the frequency-weighted controlla-
bility Grammian. abs(alphac) <= 1. If alphac = 0, the choice of Grammian
corresponds to the method of Enns [1], while if alphac = 1, the choice of Gram-
mian corresponds to the method of Lin and Chiu [2,3]. Default value is 0.

‘alpha-obsv’
Combination method parameter for defining the frequency-weighted observabil-
ity Grammian. abs(alphao) <= 1. If alphao = 0, the choice of Grammian corre-
sponds to the method of Enns [1], while if alphao = 1, the choice of Grammian
corresponds to the method of Lin and Chiu [2,3]. Default value is 0.

)

scale’

Boolean indicating whether equilibration (scaling) should be performed on system
G prior to order reduction. Default value is true if G.scaled == false and false
if G.scaled == true. Note that for MIMO models, proper scaling of both inputs
and outputs is of utmost importance. The input and output scaling can not be
done by the equilibration option or the prescale function because these functions
perform state transformations only. Furthermore, signals should not be scaled
simply to a certain range. For all inputs (or outputs), a certain change should
be of the same importance for the model.

‘equil’,

References
[1] Enns, D. Model reduction with balanced realizations: An error bound and a frequency
weighted generalization. Proc. 23-th CDC, Las Vegas, pp. 127-132, 1984.

[2] Lin, C.-A. and Chiu, T.-Y. Model reduction via frequency-weighted balanced realization.
Control Theory and Advanced Technology, vol. 8, pp. 341-351, 1992.

[3] Sreeram, V., Anderson, B.D.O and Madievski, A.G. New results on frequency weighted
balanced reduction technique. Proc. ACC, Seattle, Washington, pp. 4004-4009, 1995.

76

Chapter 14: Model Reduction

[4] Varga, A. and Anderson, B.D.O. Square-root balancing-free methods for the frequency-
weighted balancing related model reduction. (report in preparation)

Algorithm
Uses SLICOT ABO9ID by courtesy of NICONET e.V. (http://www.slicot.org)

http://www.slicot.org

Chapter 15: Controller Reduction 77

15 Controller Reduction

15.1 btaconred

[Kr, infol
[Kr, infol
[Kr, info]
[Kr, info]

Controller

= btaconred (G, K, ...) [Function File]
= btaconred (G, K, ncr, ...) [Function File]
= btaconred (G, K, opt, ...) [Function File]
= btaconred (G, K, ncr, opt, ...) [Function File]

reduction by frequency-weighted Balanced Truncation Approximation (BTA).

Given a plant G and a stabilizing controller K, determine a reduced order controller Kr
such that the closed-loop system is stable and closed-loop performance is retained.

The algorithm tries to minimize the frequency-weighted error

|V (K — K,) W||o = min

where V and W denote output and input weightings.

Inputs
G
K

ncr

opt

Outputs
Kr

info

LTI model of the plant. It has m inputs, p outputs and n states.
LTT model of the controller. It has p inputs, m outputs and nc states.

The desired order of the resulting reduced order controller Kr. If not specified,
ncer is chosen automatically according to the description of key ’order’.

Optional pairs of keys and values. "key1", valuel, "key2", value?2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

State-space model of reduced order controller.

Struct containing additional information.

info.ncr The order of the obtained reduced order controller Kr.
info.ncs The order of the alpha-stable part of original controller K.

info.hsve The Hankel singular values of the alpha-stable part of K. The ncs
Hankel singular values are ordered decreasingly.

Option Keys and Values

‘order’, 'ncr’

‘method’

‘'weight’

The desired order of the resulting reduced order controller Kr. If not specified,
ncr is chosen automatically such that states with Hankel singular values info.hsvc
> toll are retained.

Order reduction approach to be used as follows:
'sr’, ’b’ Use the square-root Balance & Truncate method.

'bfsr’, ’f” Use the balancing-free square-root Balance & Truncate method. De-
fault method.

Specifies the type of frequency-weighting as follows:
‘none’ No weightings are used (V =1, W =1).

78

feedback’

"alpha’

‘toll’

'tol2’

‘gram-ctrb’

‘gram-obsv’

Chapter 15: Controller Reduction

‘left’, ’output’
Use stability enforcing left (output) weighting

V=(I-GK)'G, W=1I

right’, ’input’
Use stability enforcing right (input) weighting

V=I W=(-GK)'G

’both’, ’performance’
Use stability and performance enforcing weightings

V=(-GK)'G, W= (I-GK)"!

Default value.
Specifies whether K is a positive or negative feedback controller:

+7 Use positive feedback controller. Default value.
-’ Use negative feedback controller.

Specifies the ALPHA-stability boundary for the eigenvalues of the state dynamics
matrix K.A. For a continuous-time controller, ALPHA <= 0 is the boundary
value for the real parts of eigenvalues, while for a discrete-time controller, 0 <=
ALPHA <= 1 represents the boundary value for the moduli of eigenvalues. The
ALPHA-stability domain does not include the boundary. Default value is 0 for
continuous-time controllers and 1 for discrete-time controllers.

If ’order’ is not specified, toll contains the tolerance for determining the order
of the reduced controller. For model reduction, the recommended value of toll
is c*info.hsve(1), where c lies in the interval [0.00001, 0.001]. Default value is
info.ncs*eps*info.hsve(1). If ‘order’ is specified, the value of toll is ignored.

The tolerance for determining the order of a minimal realization of the
ALPHA-stable part of the given controller. TOL2 <= TOL1. If not specified,
ncs*eps*info.hsve(1) is chosen.

Specifies the choice of frequency-weighted controllability Grammian as follows:
'standard’ Choice corresponding to standard Enns’ method [1]. Default method.

’enhanced’
Choice corresponding to the stability enhanced modified Enns’
method of [2].

Specifies the choice of frequency-weighted observability Grammian as follows:
'standard’ Choice corresponding to standard Enns’ method [1]. Default method.

‘enhanced’
Choice corresponding to the stability enhanced modified Enns’
method of [2].

Chapter 15: Controller Reduction 79

'scale’

Boolean indicating whether equilibration (scaling) should be performed on G
and K prior to order reduction. Default value is false if both G.scaled == true,
K.scaled == true and true otherwise. Note that for MIMO models, proper scal-
ing of both inputs and outputs is of utmost importance. The input and output
scaling can not be done by the equilibration option or the prescale function be-
cause these functions perform state transformations only. Furthermore, signals
should not be scaled simply to a certain range. For all inputs (or outputs), a
certain change should be of the same importance for the model.

‘equil’,

Algorithm
Uses SLICOT SB16AD by courtesy of NICONET e.V. (http://www.slicot.org)

15.2 cfconred

[Kr, info] = cfconred (G F, L, ...) [Function File]

[Kr, info] = cfconred (G, F, L, ncr, ...) [Function File]

[Kr, info] = cfconred (G, F, L, opt, ...) [Function File]
[

[Kr, info] = cfconred (G, F, L, ncr, opt, ...) Function File]
Reduction of state-feedback-observer based controller by coprime factorization (CF). Given a

plant G, state feedback gain F and full observer gain L, determine a reduced order controller
Kr.

Inputs

G LTI model of the open-loop plant (A,B,C,D). It has m inputs, p outputs and n
states.

F Stabilizing state feedback matrix (m-by-n).

L Stabilizing observer gain matrix (n-by-p).

ncr The desired order of the resulting reduced order controller Kr. If not specified,
ncr is chosen automatically according to the description of key ’order’.
Optional pairs of keys and values. "keyl", valuel, "key2", value2.

opt Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Outputs

Kr State-space model of reduced order controller.

info Struct containing additional information.

info.hsv The Hankel singular values of the extended system?!?7. The n Hankel
singular values are ordered decreasingly.

info.ncr The order of the obtained reduced order controller Kr.
Option Keys and Values

‘order’, 'ncr’
The desired order of the resulting reduced order controller Kr. If not specified,
ncr is chosen automatically such that states with Hankel singular values info.hsv
> toll are retained.

'method’ Order reduction approach to be used as follows:
'sr-bta’, ’b’
Use the square-root Balance & Truncate method.

http://www.slicot.org

80

’Cf’

feedback’

’toll’

‘tol2’

Ie

‘equil’,

Algorithm

Chapter 15: Controller Reduction

'bfsr-bta’, ’f’
Use the balancing-free square-root Balance & Truncate method. De-
fault method.

7S7

Use the square-root Singular Perturbation Approximation method.

'sr-spa’,

P

"bfsr-spa’, 'p
Use the balancing-free square-root Singular Perturbation Approxi-
mation method.

Specifies whether left or right coprime factorization is to be used as follows:
left’, I’ Use left coprime factorization. Default method.

right’, '’ Use right coprime factorization.

Specifies whether F' and L are fed back positively or negatively:

+7 A+BK and A+LC are both Hurwitz matrices.

-’ A-BK and A-LC are both Hurwitz matrices. Default value.

If ’order’ is not specified, toll contains the tolerance for determining the order
of the reduced system. For model reduction, the recommended value of toll
is c*info.hsv(1), where c lies in the interval [0.00001, 0.001]. Default value is
n*eps*info.hsv(1). If ‘order’ is specified, the value of toll is ignored.

The tolerance for determining the order of a minimal realization of the coprime
factorization controller. TOL2 <= TOL1. If not specified, n*eps*info.hsv(1) is
chosen.

scale’

Boolean indicating whether equilibration (scaling) should be performed on system
G prior to order reduction. Default value is true if G.scaled == false and false
if G.scaled == true. Note that for MIMO models, proper scaling of both inputs
and outputs is of utmost importance. The input and output scaling can not be
done by the equilibration option or the prescale function because these functions
perform state transformations only. Furthermore, signals should not be scaled
simply to a certain range. For all inputs (or outputs), a certain change should
be of the same importance for the model.

Uses SLICOT SB16BD by courtesy of NICONET e.V. (http://www.slicot.org)

15.3 fwcfconred

[Kr, infol
[Kr, info]
[Kr, info]
[Kr, info]

= fwcfconred (G, F, L, ...) [Function File]
= fwcfconred (G, F, L, ncr, ...) [Function File]
= fwcfconred (G, F, L, opt, ...) [Function File]
= fwcfconred (G, F, L, ncr, opt, ...) [Function File]

Reduction of state-feedback-observer based controller by frequency-weighted coprime factor-
ization (FW CF). Given a plant G, state feedback gain F and full observer gain L, determine
a reduced order controller Kr by using stability enforcing frequency weights.

Inputs
G

F

LTI model of the open-loop plant (A,B,C,D). It has m inputs, p outputs and n
states.

Stabilizing state feedback matrix (m-by-n).

http://www.slicot.org

Chapter 15: Controller Reduction 81

ncr

opt

Outputs
Kr

info

Stabilizing observer gain matrix (n-by-p).

The desired order of the resulting reduced order controller Kr. If not specified,
ncr is chosen automatically according to the description of key ’order’.

Optional pairs of keys and values. "keyl", valuel, "key2", value2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

State-space model of reduced order controller.
Struct containing additional information.

info.hsv The Hankel singular values of the extended system?!?. The n Hankel
singular values are ordered decreasingly.

info.ncr The order of the obtained reduced order controller Kr.

Option Keys and Values

‘order’, 'ncr’

‘method’

"feedback’

’toll’

Algorithm

The desired order of the resulting reduced order controller Kr. If not specified,
ncer is chosen automatically such that states with Hankel singular values info.hsv
> toll are retained.

Order reduction approach to be used as follows:
'sr’, ’b’ Use the square-root Balance & Truncate method.

'bfsr’, ’f” Use the balancing-free square-root Balance & Truncate method. De-
fault method.

Specifies whether left or right coprime factorization is to be used as follows:
left’, I’ Use left coprime factorization.

right’, v’ Use right coprime factorization. Default method.

Specifies whether F' and L are fed back positively or negatively:

+7 A+BK and A+LC are both Hurwitz matrices.

-’ A-BK and A-LC are both Hurwitz matrices. Default value.

If ’order’ is not specified, toll contains the tolerance for determining the order
of the reduced system. For model reduction, the recommended value of toll
is c*info.hsv(1), where c lies in the interval [0.00001, 0.001]. Default value is
n*eps*info.hsv(1). If ‘order’ is specified, the value of toll is ignored.

Uses SLICOT SB16CD by courtesy of NICONET e.V. (http://www.slicot.org)

15.4 spaconred

[Kr, info]
[Kr, info]
[Kr, infol
[Kr, infol

Controller

= spaconred (G, K, ...) [Function File]
= spaconred (G, K, ncr, ...) [Function File]
= spaconred (G, K, opt, ...) [Function File]
= spaconred (G, K, ncr, opt, ...) [Function File]

reduction by frequency-weighted Singular Perturbation Approximation (SPA).

Given a plant G and a stabilizing controller K, determine a reduced order controller Kr
such that the closed-loop system is stable and closed-loop performance is retained.

http://www.slicot.org

82

Chapter 15: Controller Reduction

The algorithm tries to minimize the frequency-weighted error

||V (K — K,) W||o = min

where V and W denote output and input weightings.

Inputs

G
K

ncr

opt

Outputs
Kr

info

LTI model of the plant. It has m inputs, p outputs and n states.
LTI model of the controller. It has p inputs, m outputs and nc states.

The desired order of the resulting reduced order controller Kr. If not specified,
ncer is chosen automatically according to the description of key ’order’.

Optional pairs of keys and values. "keyl", valuel, "key2", value2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

State-space model of reduced order controller.

Struct containing additional information.

info.ncr The order of the obtained reduced order controller Kr.
info.ncs The order of the alpha-stable part of original controller K.

info.hsve The Hankel singular values of the alpha-stable part of K. The ncs
Hankel singular values are ordered decreasingly.

Option Keys and Values

‘order’, 'ncr’

‘method’

"'weight’

The desired order of the resulting reduced order controller Kr. If not specified,
ncr is chosen automatically such that states with Hankel singular values info.hsvc
> toll are retained.

Order reduction approach to be used as follows:

) ? da?

sr’, s Use the square-root Singular Perturbation Approximation method.

'bfsr’, 'p’ Use the balancing-free square-root Singular Perturbation Approxi-
mation method. Default method.
Specifies the type of frequency-weighting as follows:
‘none’ No weightings are used (V =1, W =I).
‘left’, output’
Use stability enforcing left (output) weighting
V=(I-GK)'G, W=1I
right’, ’input’
Use stability enforcing right (input) weighting
V=I, W=(I-GK)'G
’both’, ’performance’
Use stability and performance enforcing weightings

V= (-GK)'G, W=(-GK)!

Default value.

Chapter 15: Controller Reduction 83

'feedback’

‘alpha’

'toll’

'tol2’

‘gram-ctrb’

‘gram-obsv’

‘equil’, ’

Algorithm

Specifies whether K is a positive or negative feedback controller:

+7 Use positive feedback controller. Default value.

-’ Use negative feedback controller.

Specifies the ALPHA-stability boundary for the eigenvalues of the state dynamics
matrix K.A. For a continuous-time controller, ALPHA <= 0 is the boundary
value for the real parts of eigenvalues, while for a discrete-time controller, 0 <=
ALPHA <= 1 represents the boundary value for the moduli of eigenvalues. The
ALPHA-stability domain does not include the boundary. Default value is 0 for
continuous-time controllers and 1 for discrete-time controllers.

If ’order’ is not specified, toll contains the tolerance for determining the order
of the reduced controller. For model reduction, the recommended value of toll
is c*info.hsve(1), where c lies in the interval [0.00001, 0.001]. Default value is
info.ncs*eps*info.hsve(1). If ‘order’ is specified, the value of toll is ignored.

The tolerance for determining the order of a minimal realization of the
ALPHA-stable part of the given controller. TOL2 <= TOL1. If not specified,
ncs*eps*info.hsve(1) is chosen.

Specifies the choice of frequency-weighted controllability Grammian as follows:
'standard’ Choice corresponding to standard Enns’ method [1]. Default method.

‘enhanced’
Choice corresponding to the stability enhanced modified Enns’
method of [2].

Specifies the choice of frequency-weighted observability Grammian as follows:
'standard’ Choice corresponding to standard Enns’ method [1]. Default method.

‘enhanced’
Choice corresponding to the stability enhanced modified Enns’
method of [2].

scale’

Boolean indicating whether equilibration (scaling) should be performed on G
and K prior to order reduction. Default value is false if both G.scaled == true,
K.scaled == true and true otherwise. Note that for MIMO models, proper scal-
ing of both inputs and outputs is of utmost importance. The input and output
scaling can not be done by the equilibration option or the prescale function be-
cause these functions perform state transformations only. Furthermore, signals
should not be scaled simply to a certain range. For all inputs (or outputs), a
certain change should be of the same importance for the model.

Uses SLICOT SB16AD by courtesy of NICONET e.V. (http://www.slicot.org)

http://www.slicot.org

84

Chapter 16: Experimental Data Handling

16 Experimental Data Handling

16.1 iddata

dat = iddata (y
dat = iddata (y, u)
dat = iddata (
dat = iddata (y, u, [, ...)

)

[Function File]
[Function File]
y, u, tsam, ...) [Function File]
[]

Function File

Create identification dataset of output and input signals.

Inputs
y

tsam

Outputs
dat

Real matrix containing the output signal in time-domain. For a system with p
outputs and n samples, y is a n-by-p matrix. For data from multiple experiments,
y becomes a e-by-1 or 1-by-e cell vector of n(i)-by-p matrices, where e denotes
the number of experiments and n(i) the individual number of samples for each
experiment.

Real matrix containing the input signal in time-domain. For a system with m
inputs and n samples, u is a n-by-m matrix. For data from multiple experiments,
u becomes a e-by-1 or 1-by-e cell vector of n(i)-by-m matrices, where e denotes
the number of experiments and n(i) the individual number of samples for each
experiment. If u is not specified or an empty element [] is passed, dat becomes
a time series dataset.

Sampling time. If not specified, default value -1 (unspecified) is taken. For
multi-experiment data, tsam becomes a e-by-1 or 1-by-e cell vector containing
individual sampling times for each experiment. If a scalar tsam is provided, then
all experiments have the same sampling time.

Optional pairs of properties and values.

iddata identification dataset.

Option Keys and Values

’expname’

P

Y

‘outname’

‘outunit’
7u7

’inname’

’inunit’
‘tsam’
‘timeunit’
‘name’
‘notes’

‘userdata’

The name of the experiments in dat. Cell vector of length e containing strings.
Default names are {’expl’, ’exp2’, ...}

Output signals. See 'Inputs’ for details.

The name of the output channels in dat. Cell vector of length p containing
strings. Default names are {’y1’, ’y2’, ...}

The units of the output channels in dat. Cell vector of length p containing strings.
Input signals. See ’Inputs’ for details.

The name of the input channels in dat. Cell vector of length m containing strings.
Default names are {’u1’, ’u2’, ...}

The units of the input channels in dat. Cell vector of length m containing strings.
Sampling time. See ’Inputs’ for details.

The units of the sampling times in dat. Cell vector of length e containing strings.
String containing the name of the dataset.

String or cell of string containing comments.

Any data type.

Chapter 16: Experimental Data Handling 85

16.2 @iddata/cat

dat = cat (dim, datl, dat2, ...) [Function File]
Concatenate iddata sets along dimension dim.
Inputs
dim Dimension along which the concatenation takes place.

1 Concatenate samples. The samples are concatenated in the fol-
lowing way: dat.y{e} = [datl.y{e}; dat2.y{e}; ...] dat.uf{e}
= [datl.u{e}; dat2.u{e}; ...] where e denotes the experiment.
The number of experiments, outputs and inputs must be equal for
all datasets. Equivalent to vertcat.

2 Concatenate inputs and outputs. The outputs and inputs are
concatenated in the following way: dat.y{e} = [datl.y{e},
dat2.y{e}, ...] dat.u{e} = [datl.uf{e}, dat2.uf{el}, ...]
where e denotes the experiment. The number of experiments and
samples must be equal for all datasets. Equivalent to horzcat.

3 Concatenate experiments. The experiments are concatenated in the
following way: dat.y = [datl.y; dat2.y; ...] dat.u = [datl.u;
dat2.u; ...] The number of outputs and inputs must be equal for
all datasets. Equivalent to merge.

datl, dat2, ...

iddata sets to be concatenated.
Outputs
dat Concatenated iddata set.

See also: horzcat, merge, vertcat.

16.3 @iddata/detrend

dat = detrend (dat) [Function File]
dat = detrend (dat, ord) [Function File]
Detrend outputs and inputs of dataset dat by removing the best fit of a polynomial of order
ord. If ord is not specified, default value 0 is taken. This corresponds to removing a constant.

16.4 @iddata/diff

dat = diff (dat) [Function File]

dat = diff (dat, k) [Function File]
Return k-th difference of outputs and inputs of dataset dat. If k is not specified, default
value 1 is taken.

16.5 @iddata/fft

dat = fft (dat) [Function File]

dat = fft (dat, n) [Function File]
Transform iddata objects from time to frequency domain using a Fast Fourier Transform
(FFT) algorithm.

Inputs

86 Chapter 16: Experimental Data Handling

dat iddata set containing signals in time-domain.

n Length of the FFT transformations. If n does not match the signal length, the
signals in dat are shortened or padded with zeros. n is a vector with as many
elements as there are experiments in dat or a scalar with a common length for
all experiments. If not specified, the signal lengths are taken as default values.

Outputs

dat iddata identification dataset in frequency-domain. In order to preserve signal
power and noise level, the FFTs are normalized by dividing each transform by
the square root of the signal length. The frequency values are distributed equally
from 0 to the Nyquist frequency. The Nyquist frequency is only included for even
signal lengths.

16.6 @iddata/filter

dat = filter (dat, sys) [Function File]

dat = filter (dat, b, a) [Function File]
Filter output and input signals of dataset dat. The filter is specified either by LTI system sys
or by transfer function polynomials b and a as described in the help text of Octave’s built-in
filter function. Type help filter for more information.

Inputs

dat iddata identification dataset containing signals in time-domain.

Sys LTT object containing the discrete-time filter.

b Numerator polynomial of the discrete-time filter. Must be a row vector containing
the coefficients of the polynomial in ascending powers of z"-1.

a Denominator polynomial of the discrete-time filter. Must be a row vector con-
taining the coefficients of the polynomial in ascending powers of z"-1.

Outputs

dat iddata identification dataset with filtered output and input signals.

16.7 @iddata/get

get (dat) [Function File]
value = get (dat, ’key’) [Function File]
[vall, val2, ...] = get (dat, ’keyl’, ’key2’, ...) [Function File]

Access key values of iddata objects. Type get(dat) to display a list of available keys.

16.8 @iddata/ifft

dat = ifft (dat) [Function File]
Transform iddata objects from frequency to time domain.

Inputs

dat iddata set containing signals in frequency domain. The frequency values must
be distributed equally from 0 to the Nyquist frequency. The Nyquist frequency
is only included for even signal lengths.

Outputs

dat iddata identification dataset in time domain. In order to preserve signal power

and noise level, the FFTs are normalized by multiplying each transform by the
square root of the signal length.

Chapter 16: Experimental Data Handling 87

16.9 @iddata/merge

dat = merge (datl, dat2, ...) [Function File]
Concatenate experiments of iddata datasets. The experiments are concatenated in the fol-
lowing way: dat.y = [datl.y; dat2.y; ...] dat.u = [datl.u; dat2.u; ...] The number

of outputs and inputs must be equal for all datasets.

16.10 @iddata/nkshift

dat = nkshift (dat, nk) [Function File]

dat = nkshift (dat, nk, ’append’) [Function File]
Shift input channels of dataset dat according to integer nk. A positive value of nk means
that the input channels are delayed nk samples. By default, both input and output signals
are shortened by nk samples. If a third argument ’append’ is passed, the output signals are
left untouched while nk zeros are appended to the (shortened) input signals such that the
number of samples in dat remains constant.

16.11 @iddata/plot

plot (dat) [Function File]

plot (dat, exp) [Function File]
Plot signals of iddata identification datasets on the screen. The signals are plotted
experiment-wise, either in time- or frequency-domain. For multi-experiment datasets, press
any key to switch to the next experiment. If the plot of a single experiment should be saved
by the print command, use plot(dat,exp), where exp denotes the desired experiment.

16.12 @iddata/resample

dat = resample (dat, p, q) [Function File]
dat = resample (dat, p, q, n) [Function File]
dat = resample (dat, p, q, h) [Function File]

Change the sample rate of the output and input signals in dataset dat by a factor of p/q.
This is performed using a polyphase algorithm. The anti-aliasing FIR filter can be specified
as follows: Either by order n (scalar) with default value 0. The band edges are then chosen
automatically. Or by impulse response h (vector). Requires the signal package to be installed.

Algorithm
Uses functions firl and resample from the signal package.

References

[1] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and
Applications, 4th ed., Prentice Hall, 2007. Chap. 6

[2] A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-time signal processing, Signal
processing series, Prentice-Hall, 1999

16.13 @iddata/set

set (dat) [Function File]
set (dat, ’key’, value, ...) [Function File]
dat = set (dat, ’key’, value, ...) [Function File]

Set or modify keys of iddata objects. If no return argument dat is specified, the modified
IDDATA object is stored in input argument dat. set can handle multiple keys in one call: set
(dat, ’keyl’, vall, ’key2’, val2, ’key3’, val3). set (dat) prints a list of the object’s
key names.

88 Chapter 16: Experimental Data Handling

16.14 @iddata/size

nvec = size (dat) [Function File]
ndim = size (dat, dim) [Function File]
[n, p, m, e] = size (dat) [Function File]
Return dimensions of iddata set dat.
Inputs
dat iddata set.
dim If given a second argument, size will return the size of the corresponding dimen-
sion.
Outputs
nvec Row vector. The first element is the total number of samples (rows of dat.y and
dat.u). The second element is the number of outputs (columns of dat.y) and the
third element the number of inputs (columns of dat.u). The fourth element is
the number of experiments.
ndim Scalar value. The size of the dimension dim.
n Row vector containing the number of samples of each experiment.
p Number of outputs.
m Number of inputs.
e Number of experiments.

Chapter 17: System Identification

17 System Identification

17.1 arx

[sys, x0] = arx (dat, n, ...)
[sys, x0] = arx (dat, n, opt, ...)
[sys, x0] = arx (dat, opt, ...)

[sys, x0] = arx (dat, ’na’, na, ’nb’, nb)
Estimate ARX model using QR factorization.

89

[Function File]
[Function File]
[Function File]
[Function File]

Inputs

dat iddata identification dataset containing the measurements, i.e. time-domain sig-
nals.

n The desired order of the resulting model sys.
Optional pairs of keys and values. *keyl’, valuel, ’key2’, value2.

opt Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Outputs

Sys Discrete-time transfer function model. If the second output argument x0 is re-
turned, sys becomes a state-space model.

x0 Initial state vector. If dat is a multi-experiment dataset, x0 becomes a cell vector

containing an initial state vector for each experiment.

Option Keys and Values

'na’ Order of the polynomial A(q) and number of poles.

‘nb’ Order of the polynomial B(q)+1 and number of zeros+1. nb <= na.

'nk’ Input-output delay specified as number of sampling instants. Scalar positive
integer. This corresponds to a call to function nkshift, followed by padding the
B polynomial with nk leading zeros.

Algorithm

Uses the formulae given in [1] on pages 318-319, 'Solving for the LS Estimate by QR Factor-
ization’. For the initial conditions, SLICOT IB01CD is used by courtesy of NICONET e.V.

(http://www.slicot.org)

References
[1] Ljung, L. (1999) System Identification: Theory for the User: Second Edi
Hall, New Jersey, USA.

17.2 moen4

[sys, x0, info] = moen4 (dat, ...) [
[sys, x0, info] = moen4 (dat, n, ...) [
[sys, x0, info] = moen4 (dat, opt, ...) [
[sys, x0, info] = moen4 (dat, n, opt, ...) [

tion. Prentice

Function File]
Function File]
Function File]
Function File]

Estimate state-space model using combined subspace method: MOESP algorithm for finding
the matrices A and C, and N4SID algorithm for finding the matrices B and D. If no output

http://www.slicot.org
http://www.slicot.org

90

Chapter 17: System Identification

arguments are given, the singular values are plotted on the screen in order to estimate the
system order.

Inputs
dat

n

opt

Outputs

Sys
x0

info

iddata set containing the measurements, i.e. time-domain signals.

The desired order of the resulting state-space system sys. If not specified, n is
chosen automatically according to the singular values and tolerances.

Optional pairs of keys and values. ’keyl’, valuel, ’key2’, value2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Discrete-time state-space model.

Initial state vector. If dat is a multi-experiment dataset, x0 becomes a cell vector
containing an initial state vector for each experiment.

Struct containing additional information.

info.K Kalman gain matrix.

info.Q State covariance matrix.

info.Ry Output covariance matrix.

info.S State-output cross-covariance matrix.
info.L Noise variance matrix factor. LL’=Ry.

Option Keys and Values

The desired order of the resulting state-space system sys. s > n > 0.

The number of block rows s in the input and output block Hankel matrices to be
processed. s > 0. In the MOESP theory, s should be larger than n, the estimated
dimension of state vector.

‘alg’, ’algorithm’

‘tol’

rcond’

Specifies the algorithm for computing the triangular factor R, as follows:

'’ Cholesky algorithm applied to the correlation matrix of the input-
output data. Default method.

B’ Fast QR algorithm.

'Q’ QR algorithm applied to the concatenated block Hankel matrices.

Absolute tolerance used for determining an estimate of the system order. If tol
>= 0, the estimate is indicated by the index of the last singular value greater
than or equal to tol. (Singular values less than tol are considered as zero.) When
tol = 0, an internally computed default value, tol = s*eps*SV(1), is used, where
SV(1) is the maximal singular value, and eps is the relative machine precision.
When tol < 0, the estimate is indicated by the index of the singular value that
has the largest logarithmic gap to its successor. Default value is 0.

The tolerance to be used for estimating the rank of matrices. If the user sets
rcond > 0, the given value of rcond is used as a lower bound for the reciprocal
condition number; an m-by-n matrix whose estimated condition number is less
than 1/rcond is considered to be of full rank. If the user sets rcond <= 0, then
an implicitly computed, default tolerance, defined by rcond = m*n*eps, is used
instead, where eps is the relative machine precision. Default value is 0.

Chapter 17: System Identification

‘confirm’

‘noiseinput’

Algorithm

Uses SLICOT IB01AD, IB0O1BD and IBO1CD by courtesy of NICONET e.V. (http://wuw.

Specifies whether or not the user’s confirmation of the system order estimate is

desired, as follows:
true User’s confirmation.

false No confirmation. Default value.

The desired type of noise input channels.
‘n’ No error inputs. Default value.

ZTpt1 = Az, + Buy,

yr = Cxp + Duy,

Tpy1 = Az + Buy, + Key,

Y = C.ka'i‘D’U,k-i‘ek

matrix.

L1 = Al'k + Buk + KL’Uk

yp = Czy, + Duy, + Ly,

e = Lv, LLT:Ry

'k’ Return sys as a Kalman predictor for simulation.

Tpy1 = AZy + Buy + K(yr, — Ur)

?j\k == C%k + Duk

@k = C/.fk + D’U,k + Oyk

slicot.org)

e Return sys as a (p-by-m+p) state-space model with both measured
input channels u and noise channels e with covariance matrix Ry.

v Return sys as a (p-by-m+p) state-space model with both measured
input channels u and white noise channels v with identity covariance

http://www.slicot.org
http://www.slicot.org

92

Chapter 17: System Identification

17.3 moesp

[sys, x0, info] = moesp (dat, ...) [Function File]

[sys, x0, info] = moesp (dat, n, ...) [Function File]

[sys, x0, info] = moesp (dat, opt, ...) [Function File]
[]

[sys, x0, info]

moesp (dat, n, opt, ...) Function File
Estimate state-space model using MOESP algorithm. MOESP: Multivariable Output Error
State sPace. If no output arguments are given, the singular values are plotted on the screen
in order to estimate the system order.

Inputs

dat iddata set containing the measurements, i.e. time-domain signals.

n The desired order of the resulting state-space system sys. If not specified, n is
chosen automatically according to the singular values and tolerances.
Optional pairs of keys and values. *keyl’, valuel, ’key2’, value2.

opt Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Outputs

Sys Discrete-time state-space model.

x0 Initial state vector. If dat is a multi-experiment dataset, x0 becomes a cell vector
containing an initial state vector for each experiment.

info Struct containing additional information.
info.K Kalman gain matrix.
info.Q State covariance matrix.
info.Ry Output covariance matrix.
info.S State-output cross-covariance matrix.
info.L Noise variance matrix factor. LL’=Ry.

Option Keys and Values

P

n The desired order of the resulting state-space system sys. s > n > 0.

2

S The number of block rows s in the input and output block Hankel matrices to be
processed. s > 0. In the MOESP theory, s should be larger than n, the estimated
dimension of state vector.

'alg’, ’algorithm’
Specifies the algorithm for computing the triangular factor R, as follows:

'’ Cholesky algorithm applied to the correlation matrix of the input-
output data. Default method.
B’ Fast QR algorithm.
'Q’ QR algorithm applied to the concatenated block Hankel matrices.
‘tol’ Absolute tolerance used for determining an estimate of the system order. If tol

>= (0, the estimate is indicated by the index of the last singular value greater
than or equal to tol. (Singular values less than tol are considered as zero.) When
tol = 0, an internally computed default value, tol = s*eps*SV(1), is used, where
SV(1) is the maximal singular value, and eps is the relative machine precision.
When tol < 0, the estimate is indicated by the index of the singular value that
has the largest logarithmic gap to its successor. Default value is 0.

Chapter 17: System Identification 93

‘rcond’ The tolerance to be used for estimating the rank of matrices. If the user sets
rcond > 0, the given value of rcond is used as a lower bound for the reciprocal
condition number; an m-by-n matrix whose estimated condition number is less
than 1/rcond is considered to be of full rank. If the user sets rcond <= 0, then
an implicitly computed, default tolerance, defined by rcond = m*n*eps, is used
instead, where eps is the relative machine precision. Default value is 0.

‘confirm’ Specifies whether or not the user’s confirmation of the system order estimate is
desired, as follows:

true User’s confirmation.
false No confirmation. Default value.

‘noiseinput’
The desired type of noise input channels.

'n’ No error inputs. Default value.

Tpy1 = Al’k + Buk
Yk — Cl’k + Duk

e Return sys as a (p-by-m+p) state-space model with both measured
input channels u and noise channels e with covariance matrix Ry.

Trp+1 = Az + Buy + Key,
yr = Cop + Duy, + ey
v Return sys as a (p-by-m+p) state-space model with both measured

input channels u and white noise channels v with identity covariance
matrix.

Zpy1 = Azy, + Buy, + K Ly,

Y = Cxp + Duy + Ly,
e=Lv, LL" = R,

'k’ Return sys as a Kalman predictor for simulation.
Tpy1 = A%y, + Bug + K(yr — Ur)

Y = Cxy, + Duy,

@k = Oz + Duy, + Oy

Algorithm
Uses SLICOT IB01AD, IB0O1BD and IBO1CD by courtesy of NICONET e.V. (http://wuw.

slicot.org)

http://www.slicot.org
http://www.slicot.org

94

Chapter 17: System Identification

17.4 n4dsid

[sys, x0, info] = n4sid (dat, ...) [Function File]
[sys, x0, info] = n4sid (dat, n, ...) [Function File]
[sys, x0, info] = n4sid (dat, opt, ...) [Function File]
[sys, x0, info] = n4sid (dat, n, opt, ...) [Function File]

Estimate state-space model using N4SID algorithm. N4SID: Numerical algorithm for Subspace
State Space System IDentification. If no output arguments are given, the singular values are
plotted on the screen in order to estimate the system order.

Inputs

dat iddata set containing the measurements, i.e. time-domain signals.

n The desired order of the resulting state-space system sys. If not specified, n is
chosen automatically according to the singular values and tolerances.
Optional pairs of keys and values. *keyl’, valuel, ’key2’, value2.

opt Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Outputs

Sys Discrete-time state-space model.

x0 Initial state vector. If dat is a multi-experiment dataset, x0 becomes a cell vector
containing an initial state vector for each experiment.

info Struct containing additional information.
info.K Kalman gain matrix.
info.Q State covariance matrix.
info.Ry Output covariance matrix.
info.S State-output cross-covariance matrix.
info.L Noise variance matrix factor. LL’=Ry.

Option Keys and Values

P

n The desired order of the resulting state-space system sys. s > n > 0.

2

S The number of block rows s in the input and output block Hankel matrices to be
processed. s > 0. In the MOESP theory, s should be larger than n, the estimated
dimension of state vector.

'alg’, ’algorithm’
Specifies the algorithm for computing the triangular factor R, as follows:

'’ Cholesky algorithm applied to the correlation matrix of the input-
output data. Default method.
B’ Fast QR algorithm.
'Q’ QR algorithm applied to the concatenated block Hankel matrices.
‘tol’ Absolute tolerance used for determining an estimate of the system order. If tol

>= (0, the estimate is indicated by the index of the last singular value greater
than or equal to tol. (Singular values less than tol are considered as zero.) When
tol = 0, an internally computed default value, tol = s*eps*SV(1), is used, where
SV(1) is the maximal singular value, and eps is the relative machine precision.
When tol < 0, the estimate is indicated by the index of the singular value that
has the largest logarithmic gap to its successor. Default value is 0.

Chapter 17: System Identification 95

‘rcond’ The tolerance to be used for estimating the rank of matrices. If the user sets
rcond > 0, the given value of rcond is used as a lower bound for the reciprocal
condition number; an m-by-n matrix whose estimated condition number is less
than 1/rcond is considered to be of full rank. If the user sets rcond <= 0, then
an implicitly computed, default tolerance, defined by rcond = m*n*eps, is used
instead, where eps is the relative machine precision. Default value is 0.

‘confirm’ Specifies whether or not the user’s confirmation of the system order estimate is
desired, as follows:

true User’s confirmation.
false No confirmation. Default value.

‘noiseinput’
The desired type of noise input channels.

'n’ No error inputs. Default value.

L1 = Al’k + Buk
yr = Cxy + Duy,

e Return sys as a (p-by-m+p) state-space model with both measured
input channels u and noise channels e with covariance matrix Ry.

Tpy1 = Az, + Bug + Key,

yr = Cwp + Duy, + ey

\4 Return sys as a (p-by-m+p) state-space model with both measured
input channels u and white noise channels v with identity covariance
matrix.

Zpy1 = Azy, + Buy, + KLy,

yr = Cxyp + Duy + Loy,
e=Lv, LL" =R,

'k’ Return sys as a Kalman predictor for simulation.
Tpy1 = A%y + Buy + K(yr — Ur)

@\k = C%k + Duk

fk-&—l = (A— KO)/fk + (B - KD)Uk +Kyk
Ur = Oy + Duy, + Oyy,

Algorithm
Uses SLICOT IB01AD, IBO1BD and IBO1CD by courtesy of NICONET e.V. (http://wuw.
slicot.org)

http://www.slicot.org
http://www.slicot.org

96 Chapter 18: Overloaded LTT Operators

18 Overloaded LTI Operators

18.1 @Ilti/ctranspose

Conjugate transpose or pertransposition of LTI objects. Used by Octave for "sys’". For a
transfer-function matrix G, G’ denotes the conjugate of G given by G.’(-s) for a continuous-time
system or G.’(1/z) for a discrete-time system. The frequency response of the pertransposition
of G is the Hermitian (conjugate) transpose of G(jw), i.e. freqresp (G’, w) = freqresp (G,
w)’. WARNING: Do NOT use this for dual problems, use the transpose "sys.”" (note the dot)

instead.

18.2 @Ilti/end

End indexing for LTI objects. Used by Octave for "sys(1:end, end-1)".

18.3 @lti/horzcat

Horizontal concatenation of LTT objects. If necessary, object conversion is done by sys_group.

Used by Octave for "[sysl, sys2]|".

18.4 @lti/inv

Inversion of LTI objects.

18.5 @Iti/minus

Binary subtraction of LTI objects. If necessary, object conversion is done by sys_group. Used

by Octave for "sysl - sys2".

18.6 @Ilti/mldivide

Matrix left division of LTI objects. If necessary, object conversion is done by sys_group in

mtimes. Used by Octave for "sysl \ sys2".

18.7 @Ilti/mpower

Matrix power of LTI objects. The exponent must be an integer. Used by Octave for "sys~int".

18.8 @lti/mrdivide

Matrix right division of LTI objects. If necessary, object conversion is done by sys_group in

mtimes. Used by Octave for "sysl / sys2".

18.9 @lti/mtimes

Matrix multiplication of LTI objects. If necessary, object conversion is done by sys_group. Used

by Octave for "sysl * sys2".

Chapter 18: Overloaded LTI Operators 97

18.10 @Ilti/plus

Binary addition of LTI objects. If necessary, object conversion is done by sys_group. Used by

Octave for "sysl + sys2". Operation is also known as "parallel connection".

18.11 @lti/repmat

rsys = repmat (sys, m, n) [Function File]
rsys = repmat (sys, [m, n]) [Function File]
rsys = repmat (sys, m) [Function File]

Form a block transfer matrix of sys with m copies vertically and n copies horizontally. If n
is not specified, it is set to m. repmat (sys, 2, 3) is equivalent to [sys, sys, sys; sys,
sys, sys].

18.12 @lti/subsasgn

Subscripted assignment for LTI objects. Used by Octave for "sys.property = value".

18.13 @lti/subsref

Subscripted reference for LTI objects. Used by Octave for "sys = sys(2:4, :)" or "val = sys.prop".

18.14 @lti/times

Hadamard/Schur product of transfer function matrices. Also known as element-wise multipli-
cation. Used by Octave for "sysl .* sys2".
Example

Compute Relative-Gain Array
G = tf (Boeing707)

RGA = G .x inv (G).’

Gain at 0 rad/s

RGA(O)

18.15 @lti/transpose

Transpose of LTI objects. Used by Octave for "sys.”". Useful for dual problems, i.e. controlla-

bility and observability or designing estimator gains with 1qr and place.

18.16 @Iti/uminus

Unary minus of LTI object. Used by Octave for "-sys".

18.17 @lti/uplus

Unary plus of LTT object. Used by Octave for "+sys".

18.18 @lti/vertcat

Vertical concatenation of LTI objects. If necessary, object conversion is done by sys_group. Used
by Octave for "[sysl; sys2]".

98 Chapter 19: Overloaded IDDATA Operators

19 Overloaded IDDATA Operators

19.1 @iddata/end

End indexing for IDDATA objects. Used by Octave for "dat(1:end)".

19.2 @iddata/horzcat

dat = horzcat (datl, dat2, ...) [Function File]
Horizontal concatenation of iddata datasets. The outputs and inputs are concatenated
in the following way: dat.y{e} = [datl.y{e}, dat2.y{e}, ...] dat.u{e} = [datl.u{e},
dat2.uf{el}, ...] where e denotes the experiment. The number of experiments and samples
must be equal for all datasets.

19.3 @iddata/subsasgn

Subscripted assignment for iddata objects. Used by Octave for "dat.property = value".

19.4 @iddata/subsref

Subscripted reference for iddata objects. Used by Octave for "dat = dat(2:4, :)" or "val =
dat.prop".

19.5 @iddata/vertcat

dat = vertcat (datl, dat2, ...) [Function File]
Vertical concatenation of iddata datasets. The samples are concatenated in the follow-
ing way: dat.y{e} = [datl.y{el}; dat2.y{e}; ...] dat.u{e} = [datl.u{e}; dat2.u{e};
...] where e denotes the experiment. The number of experiments, outputs and inputs must
be equal for all datasets.

Chapter 20: Miscellaneous 99

20 Miscellaneous

20.1 db2mag

mag = db2mag (db) [Function File]
Convert Decibels (dB) to Magnitude.
Inputs
db Decibel (dB) value(s). Both real-valued scalars and matrices are accepted.
Outputs
mag Magnitude value(s).

See also: mag2db.

20.2 mag2db

db = mag2db (mag) [Function File]
Convert Magnitude to Decibels (dB).
Inputs
mag Magnitude value(s). Both real-valued scalars and matrices are accepted.
Outputs
db Decibel (dB) value(s).

See also: db2mag.

20.3 options

opt = options (’keyl’, valuel, ’key2’, value2, ...) [Function File]
Create options struct opt from a number of key and value pairs. For use with order reduction
and system identification functions. Option structs are a way to avoid typing the same key
and value pairs over and over again.

Inputs

key, property
The name of the property.

value The value of the property.
Outputs

opt Struct with fields for each key.
Example

octave:1> opt = options ("method", "spa", "tol", le-6)
opt =

scalar structure containing the fields:

method = spa
tol = 1.0000e-06

100 Chapter 20: Miscellaneous

octave:2> save filename opt

octave:3> # save the struct ’opt’ to file ’filename’ for later
octave:4> load filename

octave:5> # load struct ’opt’ from file ’filename’

20.4 pid
C = pid (Kp) [Function File]
C = pid (Kp, Ki) [Function File]
C = pid (Kp, Ki, Kd) [Function File]
C = pid (Kp, Ki, Kd, Tf) [Function File]
Return the transfer function C' of the PID controller in parallel form with first-order roll-off.
Ki Kd s
C(s) =Kp + ——— + ———————-
s Tf s + 1
20.5 pidstd
C = pidstd (Kp) [Function File]
C = pidstd (Kp, Ti) [Function File]
C = pidstd (Kp, Ti, Td) [Function File]
C = pidstd (Kp, Ti, Td, N) [Function File]
Return the transfer function C of the PID controller in standard form with first-order roll-off.
1 Td s
C(s) =Kp (1 + ———= + —————————-)

Ti s Td/N s + 1

20.6 repsys

rsys = repsys (sys, m, n) [Function File]
rsys = repsys (sys, [m, n]) [Function File]
rsys = repsys (sys, m) [Function File]

Form a block transfer matrix of sys with m copies vertically and n copies horizontally. If n
is not specified, it is set to m. repsys (sys, 2, 3) is equivalent to [sys, sys, sys; sys,
sys, sys].

20.7 strseq

strvec = strseq (str, idx) [Function File]
Return a cell vector of indexed strings by appending the indices idx to the string str.
strseq ("x", 1:3) = {"x1"; "x2"; "x3"}
strseq (nun’ [1’ 2’ 5]) = {"111"; "'ll2"; "'ll5"}

20.8 test_control

test_control [Script File]
Execute all available tests at once. The Octave control package is based on the SLICOT
(http://www.slicot.org) library. SLICOT needs BLAS and LAPACK libraries which are

use

http://www.slicot.org
http://www.slicot.org

Chapter 20: Miscellaneous 101

also prerequisites for Octave itself. In case of failing tests, it is highly recommended to
use Netlib’s reference BLAS (http://www.netlib.org/blas/) and LAPACK (http://
www .netlib.org/lapack/) for building Octave. Using ATLAS may lead to sign changes
in some entries of the state-space matrices. In general, these sign changes are not 'wrong’
and can be regarded as the result of state transformations. Such state transformations (but
not input/output transformations) have no influence on the input-output behaviour of the
system. For better numerics, the control package uses such transformations by default when
calculating the frequency responses and a few other things. However, arguments like the
Hankel singular Values (HSV) must not change. Differing HSVs and failing algorithms are
known for using Framework Accelerate from Mac OS X 10.7.

20.9 thiran

sys = thiran (tau, tsam) [Function File]
Approximation of continuous-time delay using a discrete-time allpass Thiran filter.
Thiran filters can approximate continuous-time delays that are non-integer multiples of the
sampling time (fractional delays). This approximation gives a better matching of the phase
shift between the continuous- and the discrete-time system. If there is no fractional part in
the delay, then the standard discrete-time delay representation is used.

Inputs

tau A continuous-time delay, given in time units (seconds).

tsam The sampling time of the resulting Thiran filter.

Outputs

Sys Transfer function model of the resulting filter. The order of the filter is deter-
mined automatically.

Example

octave:1> sys = thiran (1.33, 0.5)

Transfer function ’sys’ from input ’ul’ to output ...
0.003859 z"3 - 0.03947 z"2 + 0.2787 z + 1
z"3 + 0.2787 z"2 - 0.03947 z + 0.003859

Sampling time: 0.5 s
Discrete-time model.

octave:2> sys = thiran (1, 0.5)
Transfer function ’sys’ from input ’ul’ to output ...
1
yl: ---
z"2

Sampling time: 0.5 s
Discrete-time model.

See also: absorbdelay, pade.

http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/

102

20.10 BMWengine

sys = BMWengine ()
sys = BMWengine ("scaled")
sys = BMWengine ("unscaled")

Model of the BMW 4-cylinder engine at ETH Zurich’s control laboratory.

OPERATING POINT

Drosselklappenstellung alpha_DK = 10.3 Grad
Saugrohrdruck p_s = 0.48 bar
Motordrehzahl n = 860 U/min
Lambda-Messwert lambda = 1.000

Relativer Wandfilminhalt nu = 1

INPUTS

U_1 Sollsignal Drosselklappenstellung
U_2 Relative Einspritzmenge

U_3 Zuendzeitpunkt

M_L Lastdrehmoment

STATES

X_1 Drosselklappenstellung [Grad]
X_2 Saugrohrdruck [bar]
X_3 Motordrehzahl [U/min]
X_4 Messwert Lamba-Sonde (-]

X_5 Relativer Wandfilminhalt [-]

OUTPUTS

Y_1 Motordrehzahl [U/min]
Y_2 Messwert Lambda-Sonde [-]
SCALING

U_1N, X_1IN 1 Grad

U_2N, X_4N, X_bN, Y_2N 0.05
U_3N 1.6 Grad Kw

X_2N 0.05 bar

X_3N, Y_IN 200 U/min

20.11 Boeing707

sys = Boeing707 ()

[Grad]

[-]

[Grad KW]
[Nm]

Chapter 20: Miscellaneous

[Function File]
[Function File]
[Function File]

[Function File]

Creates a linearized state-space model of a Boeing 707-321 aircraft at v=80 m/s (M = 0.26,

Gao = —3°, ag = 4°, kK = 50°).
System inputs: (1) thrust and (2) elevator angle.

System outputs: (1) airspeed and (2) pitch angle.

Reference: R. Brockhaus: Flugregelung (Flight Control), Springer, 1994.

Chapter 20: Miscellaneous 103

20.12 WestlandLynx

sys = WestlandLynx () [Function File]

Model of the Westland Lynx Helicopter about hover.

INPUTS

main rotor collective
longitudinal cyclic
lateral cyclic

tail rotor collective

STATES =
pitch attitude theta [rad]

roll attitude phi [rad]

roll rate (body-axis) p [rad/s]

pitch rate (body-axis) q [rad/s]

yaw rate xi [rad/s]

forward velocity V_X [ft/s]

lateral velocity v_y [ft/s]

vertical velocity v_z [ft/s]

QUTPUTS =
heave velocity H_dot [ft/s]

pitch attitude theta [rad]

roll attitude phi [rad]

heading rate psi_dot [rad/s]

roll rate) [rad/s]

pitch rate q [rad/s]

References

[1] Skogestad, S. and Postlethwaite I. (2005) Multivariable Feedback Control: Analysis
and Design: Second Edition. Wiley. http://www.nt.ntnu.no/users/skoge/book/
2nd_edition/matlab_m/matfiles.html

http://www.nt.ntnu.no/users/skoge/book/2nd_edition/matlab_m/matfiles.html
http://www.nt.ntnu.no/users/skoge/book/2nd_edition/matlab_m/matfiles.html

104 Appendix A: GNU General Public License

Appendix A GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the GNU
General Public License for most of our software; it applies also to any other work released this
way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs, and that you know you
can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies
of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no war-
ranty for this free software. For both users’ and authors’ sake, the GPL requires that modified
versions be marked as changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incompatible
with the aim of protecting users’ freedom to change the software. The systematic pattern of
such abuse occurs in the area of products for individuals to use, which is precisely where it is
most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice
for those products. If such problems arise substantially in other domains, we stand ready to
extend this provision to those domains in future versions of the GPL, as needed to protect the
freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make it
effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

http://fsf.org/

Appendix A: GNU General Public License 105

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting work
is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate copy-
right notice, and (2) tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the work under this License,
and how to view a copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular program-
ming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means
a major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the
work’s System Libraries, or general-purpose tools or generally available free programs which
are used unmodified in performing those activities but which are not part of the work. For
example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the work.

106

Appendix A: GNU General Public License

The Corresponding Source need not include anything that users can regenerate automati-
cally from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes
a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you comply with the terms of
this License in conveying all material for which you do not control copyright. Those thus
making or running the covered works for you must do so exclusively on your behalf, under
your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on
20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of technological measures.

Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an ap-
propriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with the
Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also
meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable

Appendix A: GNU General Public License 107

section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion
of a covered work in an aggregate does not cause this License to apply to the other parts
of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms
of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corre-
sponding Source as a System Library, need not be included in conveying the object code
work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything

108

Appendix A: GNU General Public License

designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial
or non-consumer uses, unless such uses represent the only significant mode of use of the
product.

“Installation Information” for a User Product means any methods, procedures, authoriza-
tion keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The infor-
mation must suffice to ensure that the continued functioning of the modified object code is
in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in,
a User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for
a fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to con-
tinue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable
to the entire Program shall be treated as though they were included in this License, to the
extent that they are valid under applicable law. If additional permissions apply only to part
of the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of
this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and
16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or

Appendix A: GNU General Public License 109

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e. Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who con-
veys the material (or modified versions of it) with contractual assumptions of liability
to the recipient, for any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material gov-
erned by the terms of that license document, provided that the further restriction does not
survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work.
These actions infringe copyright if you do not accept this License. Therefore, by modifying
or propagating a covered work, you indicate your acceptance of this License to do so.

110

10.

11.

Appendix A: GNU General Public License

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that trans-
action who receives a copy of the work also receives whatever licenses to the work the
party’s predecessor in interest had or could give under the previous paragraph, plus a right
to possession of the Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge
for exercise of rights granted under this License, and you may not initiate litigation (includ-
ing a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed
by making, using, selling, offering for sale, or importing the Program or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but
do not include claims that would be infringed only as a consequence of further modification
of the contributor version. For purposes of this definition, “control” includes the right to
grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commit-
ment, however denominated, not to enforce a patent (such as an express permission to
practice a patent or covenant not to sue for patent infringement). To “grant” such a patent
license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license
to downstream recipients. “Knowingly relying” means you have actual knowledge that, but
for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or
convey a specific copy of the covered work, then the patent license you grant is automatically
extended to all recipients of the covered work and works based on it.

Appendix A: GNU General Public License 111

12.

13.

14.

15.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not
convey it at all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting work. The terms of
this License will continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

Revised Versions of this License.

The Free Software Foundation may publish revised and /or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of the GNU General Public License, you may choose any
version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Gen-
eral Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no addi-
tional obligations are imposed on any author or copyright holder as a result of your choosing
to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-

112 Appendix A: GNU General Public License

16.

17.

ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MOD-
IFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless
a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start

of each source file to most effectively state the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.
Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it

starts in an interactive mode:

program Copyright (C) year name of author

http://www.gnu.org/licenses/

Appendix A: GNU General Public License 113

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License. But first, please read http://www.
gnu.org/philosophy/why-not-1gpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

114

Function Index

A

ANdersonttt e 2
append. 18
ALK ettt e e e e e 89
augstate ...l 48
BUEW .« ettt 53
B

blkdiag.............ooi i 18
BMWenginel 102
DOde . .o 40
bodemag. ... 40
Boeing707 ... 102
bstmodredcviiiiii i 67
btaconredcoiiiiii 7
btamodredciiiiii 69
C

C2d it 15
o= o YA 63
At it 85
cfconred ... o e 79
o7 o3 0% 4 =Y o 20N 18
o712 ol 35
CLransSpOSe ...t 96
CEEb . 24
o3 v ol o 24
D

o 52 15
A2d .o e 16
Lo £ =P 64
db2mag. ... 99
degaim. ...t 24
detrend.........oiiiiiii e 85
diff .. 85
Alge .. 48
ALgr o 49
ALYaD e ettt ettt 65
dlyapchol i 66
o 1T P 4
ASSdata. .. oiiii 12
E

A . 96, 98
eStAm. .o e 50
F

feedbacko 19
i 85
Fadt 5
filtdata ... e 12
Filter. .o 86
fitfrd. ... 54

Function Index

frdata.o 13
freqresp . 41
fwcfconredot 80
G

GenSig. 35
get .. 13, 86
BTAM . .ttt s 25
H

h2syn......o o 54
hinfsyn.......... .o o i i 59
hnamodredcoiiiiiiii i 71
horzcat......... o il 96, 98
nSVA ... e 25
I

dddata. ... e 84
0 P 86
impulse........... il 36
indtial. . ..o 36
AV e 96
= o 25
1SCETD. e 25
isdetectable. ...t 26
18t e 27
isminimumphaseol 27
=T o 1< PP 28
188180 . it e 28
isstabilizable ...t 28
isstable ..o 29
K

Kalmano e 50
L

P 19
1ge . 51
1 o 52
ISam . e 37
LyaD et 66
lyapchol ... 66
M

MadievVsSKi ..ovtri et e 2
mag2db. ... 99
MArgin. ..o 41
MCOMIMECT .« vttt ettt ee e iee e e 20
MDSSyStem ..o 1
11T o< T 87
minreal.oiiiiiine et 34
DAl ottt e e et e 96
MIXSYI. .ot 57
111 v o S PP 60
mldivideo e 96

Function Index

MOENA . ..ttt 89
11T T=Y <] o T 92
1] o To} =T o 96
mrdivide ... e 96
MEAMES . .ottt e 96
N

NASid. ... 94
nefsyn. ... 60
NiChOlS. . i 43
nkshift. 87
6 o (PP 30
DYQUIST. ...ttt 44

ODSV .. 30
ObSVE . 30
OPtionsS. 99
OPLAPID. ..ottt 1
P

parallel 21
Pid.. ..o 100
pidstd... 100
Place. 46
Plot ... 87
PlUS ... 97
POle . 31
prescale i 16
PZIMAPD . oottt 31
R

TAMD . vttt et e 38
TEPMAt . ..o 97
B =] o= TP 100
TESAMPLE ..\ttt 87
TLOCUS . .ottt 47

S

sensitivity...........o 44
Series..... .o 21

115
ST 13, 87
Sigma. ... 45
SIZe ..o 31, 88
sminreal ...l 34
spaconredl 81
spamodred 73
< T 7
ssdata.t 13
Step ... 39
=] v of == P 100
SUDSASEN. ...ttt 97, 98
subsref 97, 98
SUMBLK . .. 22
T
test_control......... ... 100
L7 PP 9
tfdata. .. 14
thiran......... ... i 101
timesS . .o 97
Eranspose 97
UMINUS . . oottt 97
UPLUS . .ottt 97
\Y
vertcat..... 97, 98
VLFQIP . . e 3
WestlandLynX........c.ouuuuniiniinnnnnn. 103
X
B 15 P 17
Z
= oo TP 32
ZPK 11

	Examples
	MDSSystem
	optiPID
	Anderson
	Madievski
	VLFamp

	Linear Time Invariant Models
	dss
	filt
	frd
	ss
	tf
	zpk

	Model Data Access
	@lti/dssdata
	@lti/filtdata
	@lti/frdata
	@lti/get
	@lti/set
	@lti/ssdata
	@lti/tfdata
	@lti/zpkdata

	Model Conversions
	@lti/c2d
	@lti/d2c
	@lti/d2d
	@lti/prescale
	@lti/xperm

	Model Interconnections
	append
	@lti/blkdiag
	@lti/connect
	@lti/feedback
	@lti/lft
	@lti/mconnect
	@lti/parallel
	@lti/series
	sumblk

	Model Characteristics
	ctrb
	ctrbf
	@lti/dcgain
	gram
	hsvd
	@lti/isct
	isctrb
	isdetectable
	@lti/isdt
	@lti/isminimumphase
	isobsv
	@lti/issiso
	isstabilizable
	@lti/isstable
	@lti/norm
	obsv
	obsvf
	@lti/pole
	pzmap
	@lti/size
	@lti/zero

	Model Simplification
	@lti/minreal
	@lti/sminreal

	Time Domain Analysis
	covar
	gensig
	impulse
	initial
	lsim
	ramp
	step

	Frequency Domain Analysis
	bode
	bodemag
	@lti/freqresp
	margin
	nichols
	nyquist
	sensitivity
	sigma

	Pole Placement
	place
	rlocus

	Optimal Control
	augstate
	dlqe
	dlqr
	estim
	kalman
	lqe
	lqr

	Robust Control
	augw
	fitfrd
	h2syn
	hinfsyn
	mixsyn
	mktito
	ncfsyn

	Matrix Equation Solvers
	care
	dare
	dlyap
	dlyapchol
	lyap
	lyapchol

	Model Reduction
	bstmodred
	btamodred
	hnamodred
	spamodred

	Controller Reduction
	btaconred
	cfconred
	fwcfconred
	spaconred

	Experimental Data Handling
	iddata
	@iddata/cat
	@iddata/detrend
	@iddata/diff
	@iddata/fft
	@iddata/filter
	@iddata/get
	@iddata/ifft
	@iddata/merge
	@iddata/nkshift
	@iddata/plot
	@iddata/resample
	@iddata/set
	@iddata/size

	System Identification
	arx
	moen4
	moesp
	n4sid

	Overloaded LTI Operators
	@lti/ctranspose
	@lti/end
	@lti/horzcat
	@lti/inv
	@lti/minus
	@lti/mldivide
	@lti/mpower
	@lti/mrdivide
	@lti/mtimes
	@lti/plus
	@lti/repmat
	@lti/subsasgn
	@lti/subsref
	@lti/times
	@lti/transpose
	@lti/uminus
	@lti/uplus
	@lti/vertcat

	Overloaded IDDATA Operators
	@iddata/end
	@iddata/horzcat
	@iddata/subsasgn
	@iddata/subsref
	@iddata/vertcat

	Miscellaneous
	db2mag
	mag2db
	options
	pid
	pidstd
	repsys
	strseq
	test_control
	thiran
	BMWengine
	Boeing707
	WestlandLynx

	GNU General Public License
	Function Index

