
Nuitka User Manual

Contents
Overview 1

Usage 1

Requirements 1

Command Line 1

License 2

Use Cases 2

Use Case 1 - Program compilation with all modules embedded 2

Use Case 2 - Extension Module compilation 3

Use Case 3 - Package compilation 3

Use Case 4 - Cross compilation to Windows 3

Where to go next 4

Subscribe to its mailing lists 4

Report issues or bugs 4

Contact me via email with your questions 4

Word of Warning 5

Join Nuitka 5

Donations 5

Unsupported functionality 5

The co_code attribute of code objects 5

Optimization 6

Constant Folding 6

Constant Propagation 6

Builtin Call Prediction 6

Conditional Statement Prediction 7

Exception Propagation 7

Exception Scope Reduction 8

Exception Block Inlining 8

Empty branch removal 9

Unpacking Prediction 9

Builtin Type Inference 9

Quicker function calls 10

Credits 10

Contributors to Nuitka 10

Projects used by Nuitka 11

Updates for this Manual 11

Overview
Nuitka is the Python compiler. It is a good replacement for the Python interpreter and compiles every
construct that CPython 2.6, 2.7, 3.2 and 3.3 offer. It translates the Python into a C++ program that then
uses "libpython" to execute in the same way as CPython does, in a very compatible way.

This document is the recommended first read if you are interested in using Nuitka, understand its use
cases, check what you can expect, license, requirements, credits, etc.

Usage

Requirements

• C++ Compiler: You need a compiler with support for C++03

Currently this means, you need to use either of these compilers:

• GNU g++ compiler of at least version 4.4

• The clang compiler on MacOS X or FreeBSD, based on LLVM version 3.2

• The MinGW compiler on Windows

• Visual Studion 2008 and 2010 on Windows

• Python: Version 2.6, 2.7 or 3.2, 3.3 (partially)

You need CPython to execute Nuitka, because itis tightly bound to the reference implementation of
Python, called "CPython".

Note

The created binaries can be made executable independent of the Python installation, with
--portable option.

CURRENTLY not FINISHED code, so disabled.

• Operating System: Linux, FreeBSD, NetBSD, MacOS X, and Windows (32/64 bits),

Others may work as well. The portability is expected to be generally good, but the Scons usage may
have to be adapted.

• Architectures: x86, x86_64 (amd64), and arm.

Other architectures may also work, these are just the only ones tested. Feedback is welcome.

Command Line
No environment variable changes are needed, you can call the nuitka and nuitka-python scripts
directly without any changes to the environment. You may want to add the bin directory to your PATH
for your convenience, but that step is optional.

Nuitka has a --help option to output what it can do:

nuitka --help

Nuitka User Manual - Overview

Nuitka User Manual - page 1 - Overview

The nuitka-python command is the same as nuitka, but with different defaults. It tries to compile
and directly execute a Python script:

nuitka-python --help

These options with different defaults are --exe and --execute, so it is somewhat more similar to what
plain python will do.

License
Nuitka is licensed under the Apache License, Version 2.0; you may not use it file except in compliance
with the License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

Use Cases

Use Case 1 - Program compilation with all modules embedded
If you want to compile a whole program recursively, and not only the single file that is the main program,
do it like this:

nuitka-python --recurse-all program.py

Note

The is more fine grained control than --recurse-all available. Consider the output of
nuitka-python --help.

In case you have a plugin directory, i.e. one which is not found by recursing after normal import
statements (recommended way), you can always require that a given directory shall also be included in
the executable:

nuitka-python --recurse-all --recurse-directory=plugin_dir program.py

Note

If you don't do any dynamic imports, setting your PYTHONPATH at compilation time will be
sufficient for all your needs normally. Use --recurse-directory only if you make
__import__() calls that Nuitka cannot predict, because they e.g. depend on command line
parameters. Nuitka also warns about these, and point to the option.

Nuitka User Manual - License

Nuitka User Manual - page 2 - License

http://www.apache.org/licenses/LICENSE-2.0

Note

The resulting binary still depends on CPython and used C extension modules being installed. If
you want to be able to copy it to another machine, use --portable and copy the generated
"_python" directory and "_python.zip" archives as well.

CURRENTLY not FINISHED code, so disabled.

Use Case 2 - Extension Module compilation
If you want to compile a single extension module, all you have to do is this:

nuitka some_module.py

The resulting file "some_module.so" can then be used instead of "some_module.py". It's left as an
exercise to the reader, what happens if both are present.

Note

The option --recurse-all and other variants work as well.

Use Case 3 - Package compilation
If you need to compile a whole package and embedded all modules, that is also feasible, use Nuitka like
this:

nuitka some_package --recurse-directory=some_package

Note

The recursion into the package directory needs to be provided manually, otherwise the package is
empty. Data files located inside the package will not be embedded yet.

Use Case 4 - Cross compilation to Windows
Nuitka can cross compile to Windows from other platforms, specifically Linux, and these are the
instructions on how to do it.

1. Make sure to have the latest wine installed.

apt-get install wine-unstable

Nuitka User Manual - Use Case 2 - Extension Module compilation

Nuitka User Manual - page 3 - Use Case 2 - Extension Module compilation

Note

Make sure to actually use the "i386" architecture. From multiarch enabled debian systems,
that may mean to say "wine-unstable:i386", otherwise it won't work.

2. Make sure to use the latest "mxe" environment as the cross compiler.

git clone https://github.com/mxe/mxe.git
cd mxe
make gcc
mkdir -p /opt
cd /opt
ln -s $OLDPWD mingw

Nuitka will use "/opt/mingw" to locate the cross compiler.

3. Install the same Python version as you have under Linux.

wine msiexec /i python-2.7.5.msi

Note

You don't have to install documentation, TCL/Tk files, or Python tests to preserve disk space.

nuitka-python --windows-target program.py

To test the binary, use "wine program.exe", the "nuitka-python" does it automatically for you.

Where to go next
Remember, this project is not completed yet. Although the CPython test suite works near perfect, there is
still more work needed, to make it do more optimization. Try it out.

Subscribe to its mailing lists
Please visit the mailing list page in order to subscribe the relatively low volume mailing list. All Nuitka
issues can be discussed there.

Report issues or bugs
Should you encounter any issues, bugs, or ideas, please visit the Nuitka bug tracker and report them.

Contact me via email with your questions
You are welcome to contact me via email with your questions.

Nuitka User Manual - Where to go next

Nuitka User Manual - page 4 - Where to go next

http://www.nuitka.net/pages/mailinglist.html
http://bugs.nuitka.net
mailto:Kay.Hayen@gmail.com

Word of Warning
Consider using this software with caution. Your feedback and patches to Nuitka are very welcome.

Especially report it please, if you find that anything doesn't work, because the project is now at the stage
that this should not happen.

Join Nuitka
You are more than welcome to join Nuitka development and help to complete the project in all minor and
major ways.

The development of Nuitka occurs in git. We currently have these 2 branches:

• master:

This branch contains the stable release to which only hotfixes for bugs will be done. It is supposed to
work at all times and is supported.

• develop:

This branch contains the ongoing development. It may at times contain little regressions, but also
new features. On this branch the integration work is done, whereas new features might be developed
on feature branches.

Note

I accept patch files, git formatted patch queues (use git format-patch origin command), or
if you prefer git pull on the social code platforms.

I will do the integration work. If you base your work on "master" or "develop" at any given time, I
will do any re-basing required and keep your authorship intact.

Note

The Developer Manual explains the coding rules, branching model used, with feature branches
and hotfix releases, the Nuitka design and much more. Consider reading it to become a
contributor. This document is intended for Nuitka users.

Donations
Should you feel that you cannot help Nuitka directly, but still want to support, please consider making a
donation and help this way.

Unsupported functionality

The co_code attribute of code objects
The code objects are empty for for native compiled functions. There is no bytecode with Nuitka's compiled
function objects, so there is no way to provide it.

Nuitka User Manual - Word of Warning

Nuitka User Manual - page 5 - Word of Warning

http://nuitka.net/gitweb/?p=Nuitka.git;a=shortlog;h=refs/heads/master
http://nuitka.net/gitweb/?p=Nuitka.git;a=shortlog;h=refs/heads/develop
http://nuitka.net/doc/developer-manual.html
http://nuitka.net/pages/donations.html
http://nuitka.net/pages/donations.html

Optimization

Constant Folding
The most important form of optimization is the constant folding. This is when an operation can be
predicted. Currently Nuitka does these for some builtins (but not all yet), and it does it for binary/unary
operations and comparisons.

Constants currently recognized:

5 + 6 # operations
5 < 6 # comparisons
range(3) # builtins

Literals are the one obvious source of constants, but also most likely other optimization steps like constant
propagation or function inlining will be. So this one should not be underestimated and a very important
step of successful optimizations. Every option to produce a constant may impact the generated code
quality a lot.

Status: The folding of constants is considered implemented, but it might be incomplete. Please report it as
a bug when you find an operation in Nuitka that has only constants are input and is not folded.

Constant Propagation
At the core of optimizations there is an attempt to determine values of variables at run time and
predictions of assignments. It determines if their inputs are constants or of similar values. An expression,
e.g. a module variable access, an expensive operation, may be constant across the module of the
function scope and then there needs to be none, or no repeated module variable look-up.

Consider e.g. the module attribute __name__ which likely is only ever read, so its value could be
predicted to a constant string known at compile time. This can then be used as input to the constant
folding.

if __name__ == "__main__":
 # Your test code might be here
 use_something_not_use_by_program()

From modules attributes, only __name__ is currently actually optimized. Also possible would be at least
__doc__.

Also builtins exception name references are optimized if they are uses as module level read only
variables:

try:
 something()
except ValueError: # The ValueError is a slow global name lookup normally.
 pass

Builtin Call Prediction
For builtin calls like type, len, or range it is often possible to predict the result at compile time, esp. for
constant inputs the resulting value often can be precomputed by Nuitka. It can simply determine the result
or the raised exception and replace the builtin call with it allowing for more constant folding or code path
folding.

Nuitka User Manual - Optimization

Nuitka User Manual - page 6 - Optimization

type("string") # predictable result, builtin type str.
len([1, 2]) # predictable result
range(3, 9, 2) # predictable result
range(3, 9, 0) # predictable exception, range hates that 0.

The builtin call prediction is considered implemented. We can simply during compile time emulate the call
and use its result or raised exception. But we may not cover all the builtins there are yet.

Sometimes builtins should not be predicted when the result is big. A range() call e.g. may give too big
values to include the result in the binary. Then it is not done.

range(100000) # We do not want this one to be expanded

Status: This is considered mostly implemented. Please file bugs for built-ins that are predictable but are
not computed by Nuitka at compile time.

Conditional Statement Prediction
For conditional statements, some branches may not ever be taken, because of the conditions being
possible to predict. In these cases, the branch not taken and the condition check is removed.

This can typically predict code like this:

if __name__ == "__main__":
 # Your test code might be here
 use_something_not_use_by_program()

or

if False:
 # Your deactivated code might be here

It will also benefit from constant propagations, or enable them because once some branches have been
removed, other things may become more predictable, so this can trigger other optimization to become
possible.

Every branch removed makes optimization more likely. With some code branches removed, access
patterns may be more friendly. Imagine e.g. that a function is only called in a removed branch. It may be
possible to remove it entirely, and that may have other consequences too.

Status: This is considered implemented, but for the maximum benefit, more constants needs to be
determined at compile time.

Exception Propagation
For exceptions that are determined at compile time, there is an expression that will simply do raise the
exception. These can be propagated, collecting potentially "side effects", i.e. parts of expressions that
must still be executed.

Consider the following code:

print side_effect_having() + (1 / 0)
print something_else()

Nuitka User Manual - Conditional Statement Prediction

Nuitka User Manual - page 7 - Conditional Statement Prediction

The (1 / 0) can be predicted to raise a ZeroDivisionError exception, which will be propagated
through the + operation. That part is just Constant Propagation as normal.

The call to side_effect_having will have to be retained though, but the print statement, can be
turned into an explicit raise. The statement sequence can then be aborted and as such the
something_else call needs no code generation or consideration anymore.

To that end, Nuitka works with a special node that raises an exception and has so called "side_effects"
children, yet can be used in generated code as an expression.

Status: The propagation of exceptions is implemented on a very basic level. It works, but exceptions will
not propagate through all different expression and statement types. As work progresses or examples
arise, the coverage will be extended.

Exception Scope Reduction
Consider the following code:

try:
 b = 8
 print range(3, b, 0)
 print "Will not be executed"
except ValueError, e:
 print e

The try block is bigger than it needs to be. The statement b = 8 cannot cause a ValueError to be
raised. As such it can be moved to outside the try without any risk.

b = 8
try:
 print range(3, b, 0)
 print "Will not be executed"
except ValueError, e:
 print e

Status: Not yet done yet. The infrastructure is in place, but until exception block inlining works perfectly,
there is not much of a point.

Exception Block Inlining
With the exception propagation it is then possible to transform this code:

try:
 b = 8
 print range(3, b, 0)
 print "Will not be executed"
except ValueError, e:
 print e

try:
 raise ValueError, "range() step argument must not be zero"
except ValueError, e:
 print e

Nuitka User Manual - Exception Scope Reduction

Nuitka User Manual - page 8 - Exception Scope Reduction

Which then can be reduced by avoiding the raise and catch of the exception, making it:

e = ValueError("range() step argument must not be zero")
print e

Status: This is not implemented yet.

Empty branch removal
For loops and conditional statements that contain only code without effect, it should be possible to remove
the whole construct:

for i in range(1000):
 pass

The loop could be removed, at maximum it should be considered an assignment of variable i to 999
and no more.

Another example:

if side_effect_free:
 pass

The condition should be removed in this case, as its evaluation is not needed. It may be difficult to predict
that side_effect_free has no side effects, but many times this might be possible.

Status: This is not implemented yet.

Unpacking Prediction
When the length of the right hand side of an assignment to a sequence can be predicted, the unpacking
can be replaced with multiple assignments.

a, b, c = 1, side_effect_free(), 3

a = 1
b = side_effect_free()
c = 3

This is of course only really safe if the left hand side cannot raise an exception while building the
assignment targets.

We do this now, but only for constants, because we currently have no ability to predict if an expression
can raise an exception or not.

Status: Not really implemented, and should use mayHaveSideEffect() to be actually good at things.

Builtin Type Inference
When a construct like in xrange() or in range() is used, it is possible to know what the iteration
does and represent that, so that iterator users can use that instead.

I consider that:

Nuitka User Manual - Empty branch removal

Nuitka User Manual - page 9 - Empty branch removal

for i in xrange(1000):
 something(i)

could translate xrange(1000) into an object of a special class that does the integer looping more
efficiently. In case i is only assigned from there, this could be a nice case for a dedicated class.

Status: Future work, not even started.

Quicker function calls
Functions are structured so that their parameter parsing and tp_call interface is separate from the
actual function code. This way the call can be optimized away. One problem is that the evaluation order
can differ.

def f(a, b, c):
 return a, b, c

f(c = get1(), b = get2(), a = get3())

This will evaluate first get1(), then get2() and then get3() and then make the call.

In C++ whatever way the signature is written, its order is fixed.

Therefore it will be necessary to have a staging of the parameters before making the actual call, to avoid
an re-ordering of the calls to get1(), get2() and get3().

To solve this, we may have to create wrapper functions that allow different order of parameters to C++.

Status: Not even started.

Credits

Contributors to Nuitka
Thanks go to these individuals for their much valued contributions to Nuitka. Contributors have the license
to use Nuitka for their own code even if Closed Source.

The order is sorted by time.

• Li Xuan Ji: Contributed patches for general portability issue and enhancements to the environment
variable settings.

• Nicolas Dumazet: Found and fixed reference counting issues, import packages work, improved
some of the English and generally made good code contributions all over the place, solved code
generation TODOs, did tree building cleanups, core stuff.

• Khalid Abu Bakr: Submitted patches for his work to support MinGW and Windows, debugged the
issues, and helped me to get cross compile with MinGW from Linux to Windows. This was quite a
difficult stuff.

• Liu Zhenhai: Submitted patches for Windows support, making the inline Scons copy actually work on
Windows as well. Also reported import related bugs, and generally helped me make the Windows
port more usable through his testing and information.

• Christopher Tott: Submitted patches for Windows, and general as well as structural cleanups.

• Pete Hunt: Submitted patches for MacOS X support.

Nuitka User Manual - Quicker function calls

Nuitka User Manual - page 10 - Quicker function calls

• "ownssh": Submitted patches for builtins module guarding, and made massive efforts to make high
quality bug reports.

• "dr. Equivalent": Submitted the Nuitka Logo.

• Johan Holmberg: Submitted patch for Python3 support on MacOS X.

Projects used by Nuitka

• The CPython project

Thanks for giving us CPython, which is the base of Nuitka. We are nothing without it.

• The GCC project

Thanks for not only the best compiler suite, but also thanks for supporting C++11 which helped to get
Nuitka off the ground. Your compiler was the first usable for Nuitka and with little effort.

• The Scons project

Thanks for tackling the difficult points and providing a Python environment to make the build results.
This is such a perfect fit to Nuitka and a dependency that will likely remain.

• The valgrind project

Luckily we can use Valgrind to determine if something is an actual improvement without the noise.
And it's also helpful to determine what's actually happening when comparing.

• The NeuroDebian project

Thanks for hosting the build infrastructure that the Debian and sponsor Yaroslav Halchenko uses to
provide packages for all Ubuntu versions.

• The openSUSE Buildservice

Thanks for hosting this excellent service that allows us to provide RPMs for a large variety of
platforms and make them available immediately nearly at release time.

• The MinGW project

Thanks for porting the best compiler to Windows. This allows portability of Nuitka with relatively little
effort.

• The mingw-cross-env project

Thanks for enabling us to easily setup a cross compiler for my Debian that will produce working
Windows binaries.

• The Wine project

Thanks for enabling us to run the cross compiled binaries without have to maintain a windows
installation at all.

Updates for this Manual
This document is written in REST. That is an ASCII format which is readable as ASCII, but used to
generate PDF or HTML documents.

You will find the current source under: http://nuitka.net/gitweb/?p=Nuitka.git;a=blob_plain;f=README.txt

And the current PDF under: http://nuitka.net/doc/README.pdf

Nuitka User Manual - Projects used by Nuitka

Nuitka User Manual - page 11 - Projects used by Nuitka

http://www.python.org
http://gcc.gnu.org
http://www.scons.org
http://valgrind.org
http://neuro.debian.net
http://openbuildservice.org
http://www.mingw.org
http://mingw-cross-env.nongnu.org
http://www.winehq.org
http://nuitka.net/gitweb/?p=Nuitka.git;a=blob_plain;f=README.txt
http://nuitka.net/doc/README.pdf

	Overview
	Usage
	Requirements
	Command Line
	License

	Use Cases
	Use Case 1 - Program compilation with all modules embedded
	Use Case 2 - Extension Module compilation
	Use Case 3 - Package compilation
	Use Case 4 - Cross compilation to Windows

	Where to go next
	Subscribe to its mailing lists
	Report issues or bugs
	Contact me via email with your questions
	Word of Warning

	Join Nuitka
	Donations
	Unsupported functionality
	The co_code attribute of code objects

	Optimization
	Constant Folding
	Constant Propagation
	Builtin Call Prediction
	Conditional Statement Prediction
	Exception Propagation
	Exception Scope Reduction
	Exception Block Inlining
	Empty branch removal
	Unpacking Prediction
	Builtin Type Inference
	Quicker function calls

	Credits
	Contributors to Nuitka
	Projects used by Nuitka

	Updates for this Manual

